Image: How Sustainable Aviation Fuel might reduce emissions. from Business Traveller
Farm waste could fuel most domestic flights by 2025

More than 600,000 flights between Sydney and Melbourne could be powered by fuel made from agricultural waste in 2025 if Australian industry and governments make changes to support sustainable aviation fuel, a report has found.
With greater investments, the biofuel could also power 90 per cent of all domestic flights by 2050 and significantly cut aviation emissions.
The Sustainable Aviation Fuel Roadmap report, released by CSIRO and Boeing on Thursday, also found a biofuel industry could create jobs and export opportunities in Australia, though it warned the industry would need more investment and research to reach its potential.
The study comes one week before the Jet Zero Council is due to meet for the first time and after Qantas and Virgin announced plans to use more biofuel to meet environmental targets.
CSIRO senior manager and report author Max Temminghoff said Australia was uniquely placed to meet growing demand for sustainable aviation fuel (SAF) because of its strong agricultural industry.
Aviation biofuel can be created using waste from farming, such as sugarcane, sawmill residue, sorghum, used cooking oil, canola and cottonseed.
Mr Temminghoff said Australia had enough feedstock that, if refined locally, could create 60 per cent of jet fuel needed for domestic flights in 2025 and 90 per cent of the fuel needed in 2050.
“The road map estimates that Australia is currently sitting on enough resources to produce almost five billion litres of SAF by 2025,” he said.
“That’s enough fuel to power 640,000 Melbourne to Sydney return flights on a Boeing 737.”
The agricultural waste could be turned into biofuels using alcohol-to-jet technology, the report found, or the Fischer-Tropsch process being tested in Perth.
Boeing APAC regional sustainability lead Heidi Hauf said producing SAF locally would create regional jobs and export opportunities, and reduce Australia’s reliance on foreign providers.
Alternative technologies, she said, including “battery and fuel cell-powered planes” were still too limited in their range.
“SAF offers the largest potential for reduction of aviation emissions in the near-term,” she said.
But the report identified challenges to creating a biofuel industry, including a lack of local refining facilities, competition from markets including Japan and Singapore, and limited public awareness.
The report called for new policies to support SAF creation and distribution, targets for its use, further research, and better feedstock collection and processing.
Mr Temminghoff said demand for jet fuel was expected to rise by 75 per cent in 2050, underlining the need for urgent action.
“The industry realises it’s on a bit of a burning platform,” he said.
“It needs to shift and this is going to allow us to be flying a big greener by 2050.”
Worldwide, the aviation industry has pledged to achieve net-zero emissions by 2050.
Qantas has committed to using 10 per cent biofuel to cut carbon emissions by 25 per cent in 2030 and Virgin Australia recently tested a flight using a 30 per cent sustainable fuel blend
The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018
The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018,
Atmospheric Environment,
Volume 244,
2021,
117834,
ISSN 1352-2310,
https://doi.org/10.1016/j.atmosenv.2020.117834.
Highlights
- •
Global aviation warms Earth’s surface through both CO2 and net non-CO2 contributions.
- •
Global aviation contributes a few percent to anthropogenic radiative forcing.
- •
Non-CO2 impacts comprise about 2/3 of the net radiative forcing.
- •
Comprehensive and quantitative calculations of aviation effects are presented.
- •
Data are made available to analyze past, present and future aviation climate forcing.
Abstract
Global aviation operations contribute to anthropogenic climate change via a complex set of processes that lead to a net surface warming. Of importance are aviation emissions of carbon dioxide (CO2), nitrogen oxides (NOx), water vapor, soot and sulfate aerosols, and increased cloudiness due to contrail formation. Aviation grew strongly over the past decades (1960–2018) in terms of activity, with revenue passenger kilometers increasing from 109 to 8269 billion km yr−1, and in terms of climate change impacts, with CO2 emissions increasing by a factor of 6.8 to 1034 Tg CO2 yr−1. Over the period 2013–2018, the growth rates in both terms show a marked increase. Here, we present a new comprehensive and quantitative approach for evaluating aviation climate forcing terms. Both radiative forcing (RF) and effective radiative forcing (ERF) terms and their sums are calculated for the years 2000–2018. Contrail cirrus, consisting of linear contrails and the cirrus cloudiness arising from them, yields the largest positive net (warming) ERF term followed by CO2 and NOx emissions. The formation and emission of sulfate aerosol yields a negative (cooling) term. The mean contrail cirrus ERF/RF ratio of 0.42 indicates that contrail cirrus is less effective in surface warming than other terms. For 2018 the net aviation ERF is +100.9 milliwatts (mW) m−2 (5–95% likelihood range of (55, 145)) with major contributions from contrail cirrus (57.4 mW m−2), CO2(34.3 mW m−2), and NOx (17.5 mW m−2). Non-CO2 terms sum to yield a net positive (warming) ERF that accounts for more than half (66%) of the aviation net ERF in 2018. Using normalization to aviation fuel use, the contribution of global aviation in 2011 was calculated to be 3.5 (4.0, 3.4) % of the net anthropogenic ERF of 2290 (1130, 3330) mW m−2. Uncertainty distributions (5%, 95%) show that non-CO2 forcing terms contribute about 8 times more than CO2 to the uncertainty in the aviation net ERF in 2018. The best estimates of the ERFs from aviation aerosol-cloud interactions for soot and sulfate remain undetermined. CO2-warming-equivalent emissions based on global warming potentials(GWP* method) indicate that aviation emissions are currently warming the climate at approximately three times the rate of that associated with aviation CO2 emissions alone. CO2 and NOx aviation emissions and cloud effects remain a continued focus of anthropogenic climate change research and policy discussions.
References
- Airbus, 2017
AirbusGlobal Market Forecast 2017–2036(2017)Airbus, France
- Allen et al., 2016
M.R. Allen, J.S. Fuglestvedt, K.P. Shine, A. Reisinger, R.T.Pierrehumbert, P.M. ForsterNew use of global warming potentials to compare cumulative and short¬lived climate pollutantsNat. Clim. Change, 6 (8) (2016), pp. 773-776, 10.1038/nclimate2998
- Allen et al., 2018
M.R. Allen, K.P. Shine, J.S. Fuglestvedt, R.J. Millar, M. Cain, D.J.Frame, A.H. MaceyA solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigationnpj Clim. Atmos. Sci., 1 (2018), 10.1038/s41612-018-0026-816
- Agarwal et al., 2019
A. Agarwal, R.L. Speth, T.M. Fritz, S.D. Jacob, T.Rindlisbacher, R. Iovinelli, B. Owen, R.C. Miake-Lye, J.S. Sabnis, S.R.H.BarrettSCOPE11 method for estimating aircraft black carbon mass and particle number emissionsEnviron. Sci. Technol., 53 (2019), pp. 1364-1373, 10.1021/acs.est.8b04060
- Alfsen and Berntsen
K.H. Alfsen, T. BerntsenAn efficient and accurate carbon cycle model for use in simple climate mdelsCICERO, Oslo, Norway
- Archer and Brovkin, 2008
D. Archer, V. BrovkinThe millennial atmospheric lifetime of anthropogenic CO2Climatic Change, 90 (2008), pp. 283-297, 10.1007/s10584-008-9413-1
- Balkanski et al., 2010
Y. Balkanski, G. Myhre, M. Gauss, G. Rädel, E.J.Highwood, K.P. ShineDirect radiative effect of aerosols emitted by transport: from road, shipping and aviationAtmos. Chem. Phys., 10 (10) (2010), pp. 4477-4489, 10.5194/acp-10-4477-2010
- Barrett et al., 2010
S. Barrett, M. Prather, J. Penner, H. Selkirk, S.Balasubramanian, A. Dopelheuer, G. Fleming, M. Gupta, R. Halthore, J.Hileman, M. Jacobson, S. Kuhn, S. Lukachko, R. Miake-Lye, A. Petzold, C.Roof, M. Schaefer, U. Schumann, I. Waitz, R. WaysonGuidance on the Use of AEDT Gridded Aircraft Emissions in Atmospheric ModelsMassachusetts Institute for Technology, Laboratory for Aviation and the Environment (2010)LAE-2010-008-N
- Bellouin et al., 2019
N. Bellouin, J. Quaas, E. Gryspeerdt, S. Kinne, P. Stier, D.Watson-Parris, O. Boucher, K.S. Carslaw, M. Christensen, A.-L. Daniau, J.-L. Dufresne, G. FeingoldBounding global aerosol radiative forcing of climate changeRev. Geophys., 58 (2019), 10.1029/2019RG000660e2019RG000660
- Bickel et al., 2020
M. Bickel, M. Ponater, L. Bock, U. Burkhardt, S. ReinekeEstimating the effective radiative forcing of contrail cirrusJ. Clim., 33 (2020), pp. 1991-2005, 10.1175/JCLI-D-19-0467.1
- Bier et al., 2017
A. Bier, U. Burkhardt, L. BockSynoptic control of contrail cirrus life cycles and their modification due to reduced soot number emissionsJ. Geophys. Res. Atmos., 122 (21) (2017), pp. 11,584-11,603, 10.1002/2017JD027011
- Bier and Burkhardt, 2019
A. Bier, A.U. BurkhardtVariability in contrail ice nucleation and its dependence on soot number emissionsJ. Geophys. Res. Atmos., 124 (2019), pp. 3384-3400, 10.1029/2018JD029155
- Bock and Burkhardt, 2016
L. Bock, U. BurkhardtReassessing properties and radiative forcing of contrail cirrus using a climate modelJ. Geophys. Res. Atmos., 121 (2016), pp. 9717-9736, 10.1002/2016JD025112
- Boeing, 2018
BoeingOrders and Deliveries for January 2018(2018)
- Boucher et al., 2013
O. Boucher, D. Randall, P. Artaxo, C. Bretherton, G.Feingold, P. Forster, V.-M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, P.Rasch, S.K. Satheesh, S. Sherwood, B. Stevens, X.Y. ZhangClouds and aerosolsT.F. Sotcker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Doschung, A.Nauels, Y. Xia, V. Bex, P.M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press (2013), pp. 571-657, 10.1017/CBO9781107415324.016
- Boucher and Reddy, 2008
O. Boucher, M.S. ReddyClimate trade-off between black carbon and carbon dioxide emissionsEnergy Pol., 36 (2008), pp. 193-200, 10.1016/j.enpol.2007.08.039
- Brasseur et al., 2016
G.P. Brasseur, M. Gupta, B.E. Anderson, S.Balasubramanian, S. Barrett, D. Duda, G. Fleming, P.M. Forster, J.Fuglestvedt, et al.Impact of aviation on climate: FAA’s aviation climate change research initiative (ACCRI) phase IIBull. Am. Meteorol. Soc., 97 (2016), pp. 561-583, 10.1175/BAMS-D-13-00089.1
- Burkhardt et al., 2010
U. Burkhardt, B. Kärcher, U. SchumannGlobal Modelling of the contrail and contrail cirrus climate impactBull. Am. Meteorol. Soc., 91 (2010), pp. 479-484, 10.1175/2009BAMS2656.1
- Burkhardt and Kärcher, 2011
U. Burkhardt, B. KärcherGlobal radiative forcing from contrail cirrusNat. Clim. Change, 1 (2011), pp. 54-58, 10.1038/nclimate1068
- Burkhardt et al., 2018
U. Burkhardt, L. Bock, A. BierMitigating the contrail cirrus climate impact by reducing aircraft soot number emissionsnpj Clim. Atmos. Sci., 1 (2018), p. 37, 10.1038/s41612-018-0046-4
- Cain et al., 2019
M. Cain, J. Lynch, M.R. Allen, J.S. Fuglestvedt, D.J. Frame, A.H.MaceyImproved calculation of warming-equivalent emissions for short-lived climate pollutantsnpj Clim. Atmos. Sci., 2 (2019), p. 29, 10.1038/s41612-019-0086-4
- Carlin et al., 2002
B. Carlin, Q. Fu, U. Lohmann, G. Mace, K. Sassen, J.ComstockHigh-cloud horizontal inhomogeneity and solar albedo biasJ. Clim., 15 (2002), pp. 2321-2339, 10.1175/1520-0442(2002)015<2321:HCHIAS>2.0.CO;2
- Chen et al., 2012
C.-C. Chen, A. Gettelman, C. Craig, P. Minnis, D.P. DudaGlobal contrail coverage simulated by CAM5 with the inventory of 2006 global aircraft emissionsJ. Adv. Model. Earth Syst., 4 (2012), 10.1029/2011MS00010504003
- Chen and Gettelman, 2013
C.-C. Chen, A. GettelmanSimulated radiative forcing from contrails and contrail cirrusAtmos. Chem. Phys., 13 (2013), pp. 12525-12536, 10.5194/acp-13-12525-2013
- Ciais et al., 2013
P. Ciais, C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A.Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Quéré, R.B. Myneni, S. Piao, P. ThorntonCarbon and other biogeochemical cyclesT.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A.Nauels, Y. Xia, V. Bex, P.M. Midgley (Eds.), Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA(2013)
- Clarke et al., 2007
L. Clarke, J. Edmonds, H. Jacoby, H. Pitcher, J. Reilly, R.Richels“Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations.” Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change ResearchDepartment of Energy, Office of Biological & Environmental Research, Washington, 7 DC (2007), p. 54
- Collins et al., 2019
W.J. Collins, D.J. Frame, J.S. Fuglestvedt, K.P. ShineStable climate metrics for emissions of short and long-lived species – combining steps and pulsesEnviron. Res. Lett., 15 (2) (2019), 10.1088/1748-9326/ab6039024018
- Dalsøren et al., 2016
S.B. Dalsøren, C.L. Myhre, G. Myhre, A.J. Gomez-Pelaez, O.A. Søvde, I.S.A. Isaksen, R.F. Weiss, C.M. HarthAtmospheric methane evolution the last 40 yearsAtmos. Chem. Phys., 16 (2016), pp. 3099-3126, 10.5194/acp-16-3099-2016
- DeMott et al., 1999
P.J. DeMott, Y. Chen, S.M. Kreidenweis, D.C. Rogers, D.E.ShermanIce formation by black carbon particlesGeophys. Res. Lett., 26 (1999), pp. 2429-2432, 10.1029/1999GL900580
- Derwent et al., 2001
R.G. Derwent, W.J. Collins, C.E. Johnson, D.S. StevensonTransient behaviour of tropospheric ozone precursors in a global 3-D CTM and their indirect greenhouse effectsClimatic Change, 49 (2001), pp. 463-487, 10.1023/A:1010648913655
- Dstan 91-91, 2015
Dstan 91-91Turbine Fuel, Kerosene Type, Jat A-1. Ministry of Defence, Defence Standard 91-91”, Issue 7, Amendment 3. Defence Equipment and SupportUK Defence Standardization, Glasgow, UK (2015)
- Ebbinghaus and Wiesen, 2001
A. Ebbinghaus, P. WiesenAircraft fuels and their effects upon engine emissionsAir Space Eur., 3 (2001), pp. 101-103, 10.1016/S1290-0958(01)90026-7
- Etminan et al., 2016
M. Etminan, G. Myhre, E.J. Highwood, K.P. ShineRadiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcingGeophys. Res. Lett., 43 (2016), pp. 12,614-12,623, 10.1002/2016GL071930
- Faber et al., 2008
J. Faber, D. Greenwood, D.S. Lee, M. Mann, P.M. de Leon, D.Nelissen, B. Owen, M. Ralph, J. Tilston, A. van Velzen, G. van de VreedeLower NOx at Higher Altitudes: Policies to Reduce the Climate Impact of Aviation NOx Emissions(2008)CE-Delft, 08.7536.32, Delft, The Netherlands
- Fleming and Ziegler, 2016
G. Fleming, U. ZieglerEnvironmental Trends in Aviation to 2050. In ‘ICAO Environmental Report, 2016’International Civil Aviation Organization, Montreal (2016)
- Fleming and de Lepinay, 2019
G. Fleming, I. de LepinayEnvironmental Trends in Aviation to 2050”, in ICAO Environmental Report, 2019 Destination Green the Next ChapterICAO, Montreal (2019)2019
- Forster and Shine, 1997
P.M.d.F. Forster, K.P. ShineRadiative forcing and temperature trends from stratospheric ozone changesJ. Geophys. Res., 102 (1997), pp. 10841-10855, 10.1029/96JD03510
- Forster et al., 2003
C. Forster, A. Stohl, P. James, V. ThouretThe residence times of aircraft emissions in the stratosphere using a mean emission inventory and emissions along actual flight tracksJ. Geophys. Res. Atmos., 108 (2003), p. 8524, 10.1029/2002JD002515
- Freeman et al., 2018
S. Freeman, D.S. Lee, L.L. Lim, A. Skowron, R.R. De LeónTrading off aircraft fuel burn and NOx emissions for optimal climate policyEnviron. Sci. Technol., 52 (2018), pp. 2498-2505, 10.1021/acs.est.7b05719
- Friedlingstein et al., 2006
P. Friedlingstein, P. Cox, R. Betts, L. Bopp, W. von Bloh, V. Brovkin, P. Cadule, S. Doney, M. Eby, I. Fung, G. Bala, J. John, C.Jones, F. Joos, T. Kato, M. Kawamiya, W. Knorr, K. Lindsay, H.D.Matthews, T. Raddatz, P. Rayner, C. Reick, E. Roeckner, K.-G. Schnitzler, R. Schnur, K. Strassmann, A.J. Weaver, C. Yoshikawa, N. ZengClimate-carbon cycle feedback analysis: Results from the C4MIP model intercomparisonJ. Clim., 19 (2006), pp. 3337-3353, 10.1175/JCLI3800.1
- Frömming et al., 2012
C. Frömming, M. Ponater, K. Dahlmann, V. Grewe, D.S.Lee, R. SausenAviation-induced radiative forcing and surface temperature change in dependency of the emission altitudeJ. Geophys. Res. Atmos., 117 (2012), pp. 9717-9736, 10.1029/2012JD018204
- Fuglestvedt and Berntsen, 1999
J.S. Fuglestvedt, T. BerntsenA Simple Model for Scenario Studies of Changes in Climate, Version 1.0CICERO, Oslo, Norway (1999), p. 59
- Fuglestvedt et al., 1999
J.S. Fuglestvedt, T.K. Berntsen, I.S.A. Isaksen, H.T. Mao, X.Z. Liang, W.C. WangClimatic forcing of nitrogen oxides through changes in tropospheric ozone and methane; global 3D model studiesAtmos. Environ., 33 (1999), pp. 961-977
- Fuglestvedt et al., 2008
J. Fuglestvedt, T. Berntsen, G. Myhre, K. Rypdal, R.B.SkeieClimate forcing from the transport sectorsProc. Natl. Acad. Sci. U.S.A, 105 (2) (2008), pp. 454-458, 10.1073/pnas.0702958104
- Fuglestvedt et al., 2009
J.S. Fuglestvedt, T. Berntsen, V. Eyring, I. Isaksen, D.S.Lee, R. SausenShipping emissions: from cooling to warming of climate–and reducing impacts on healthEnviron. Sci. Technol., 43 (2009), pp. 9057-9062, 10.1021/es901944r
- Fuglestvedt et al., 2010
J.S. Fuglestvedt, K.P. Shine, T. Berntsen, J. Cook, D.S.Lee, A. Stenke, R.B. Skeie, G.J.M. Velders, I.A. WaitzTransport impacts on atmosphere and climate: MetricsAtmos. Environ., 44 (2010), pp. 4648-4677, 10.1016/j.atmosenv.2009.04.044
- Gasser et al., 2017
T. Gasser, G.P. Peters, J.S. Fuglestvedt, W.J. Collins, D.T.Shindell, P. CiaisAccounting for the climate-carbon feedback in emission metricsEarth Syst. Dynam., 8 (2017), pp. 235-253, 10.5194/esd-8-235-2017
- Gauss et al., 2003
M. Gauss, I.S.A. Isaksen, S. Wong, W.C. WangImpact of H2O emissions from cryoplanes and kerosene aircraft on the atmosphereJ. Geophys. Res. Atmos., 108 (D10) (2003), p. 4304, 10.1029/2002JD002623
- Gettelman and Chen, 2013
A. Gettelman, C. ChenThe climate impact of aviation aerosolsGeophys. Res. Lett., 40 (2013), pp. 2785-2789, 10.1002/grl.50520
- Gounou and Hogan, 2007
A. Gounou, R.J. HoganA sensitivity study of the effect of horizontal photon transport on the radiative forcing of contrailsJ. Atmos. Sci., 64 (2007), pp. 1706-1716, 10.1175/JAS3915.1
- Gottschaldt et al., 2013
K. Gottschaldt, C. Voigt, P. Jöckel, M. Righi, R. Deckert, S. DietmüllerGlobal sensitivity of aviation NOx effects to the HNO3-forming channel of the HO2 + NO reactionAtmos. Chem. Phys., 13 (2013), pp. 3003-3025, 10.5194/acp-13-3003-2013
- Grewe and Stenke, 2008
V. Grewe, A. StenkeAirClim: an efficient tool for climate evaluation of aircraft technologyAtmos. Chem. Phys., 8 (2008), pp. 4621-4639, 10.5194/acp-8-4621-2008
- Hansen et al., 1997
J. Hansen, M. Sato, R. RuedyRadiative forcing and climate responseJ. Geophys. Res. Atmos., 102 (D6) (1997), pp. 6831-6864, 10.1029/96JD03436
- Hansen and Nazarenko, 2004
J. Hansen, L. NazarenkoSoot climate forcing via snow and ice albedosProc. Natl. Acad. Sci. U.S.A., 101 (2004), pp. 423-428, 10.1073/pnas.2237157100
- Hansen et al., 2005
J. Hansen, M. Sato, R. Ruedy, L. Nazarenko, A. Lacis, G.A.Schmidt, G. Russell, I. Aleinov, M. Bauer, S. Bauer, N. Bell, B. Cairns, V.Canuto, M. Chandler, Y. Cheng, A. Del Genio, G. Faluvegi, E. Fleming, A.Friend, T. Hall, C. Jackman, M. Kelley, N. Kiang, D. Koch, J. Lean, J.Lerner, K. Lo, S. Menon, R. Miller, P. Minnis, T. Novakov, V. Oinas, JaPerlwitz, Ju Perlwitz, D. Rind, A. Romanou, D. Shindell, P. Stone, S. Sun, N. Tausnev, D. Thresher, B. Wielicki, T. Wong, M. Yao, S. ZhangEfficacy of climate forcingsJ. Geophys. Res. Atmos., 110 (2005), p. D18104, 10.1029/2005JD005776
- Hari et al., 2015
T.K. Hari, Z. Yaakob, N. BinithaAviation biofuel from renewable resources: routes, opportunities and challengesRenew. Sustain. Energy Rev., 42 (2015), pp. 1234-1244, 10.1016/j.rser.2014.10.095
- Hasselmann et al., 1997
K. Hasselmann, S. Hasselmann, R. Giering, V. Ocana, H. von StorchSensitivity study of optimal CO2 emission paths using a simplified structural integrated assessment model (SIAM)Climatic Change, 37 (1997), pp. 345-386, 10.1023/A:1005339625015
- Hendricks et al., 2011
J. Hendricks, B. Kärcher, U. LohmannEffects of ice nuclei on cirrus clouds in a global climate modelJ. Geophys. Res. Atmos., 116 (2011), pp. 2156-2202, 10.1029/2010JD015302
- Hodnebrog et al., 2011
Ø. Hodnebrog, T.K. Berntsen, O. Dessens, M. Gauss, V.Grewe, I.S.A. Isaksen, B. Koffi, G. Myhre, D. Olivié, M.J. Prather, J.A. Pyle, F. Stordal, S. Szopa, Q. Tang, P. van Velthoven, J.E. Williams, K. ØdemarkFuture impact of non-land based traffic emissions on atmospheric ozone and OH – an optimistic scenario and a possible mitigation strategyAtmos. Chem. Phys., 11 (2011), pp. 11,293-11,317, 10.5194/acp-11-11293-2011
- Hodnebrog et al., 2012
Ø. Hodnebrog, T.K. Berntsen, O. Dessens, M. Gauss, V.Grewe, I.S.A. Isaksen, B. Koffi, G. Myhre, D. Olivié, M.J. Prather, F.Stordal, S. Szopa, Q. Tang, P. van Velthoven, J.E. WilliamsFuture impact of traffic emissions on atmospheric ozone and OH based on two scenariosAtmos. Chem. Phys., 12 (2012), pp. 12,211-12,225, 10.5194/acp-12-12211-2012
- Holmes et al., 2011
C.D. Holmes, Q. Tang, M.J. PratherUncertainties in climate assessment for the case of aviation NOProc. Natl. Acad. Sci. U.S.A., 108 (27) (2011), pp. 10997-11002, 10.1073/pnas.1101458108
- Holmes et al., 2013
C.D. Holmes, M.J. Prather, O.A. Søvde, G. MyhreFuture methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictionsAtmos. Chem. Phys., 13 (2013), pp. 285-302, 10.5194/acp-13-285-2013
- Hoor et al., 2009
P. Hoor, J. Borken-Kleefeld, D. Caro, O. Dessens, O. Endresen, M. Gauss, V. Grewe, D. Hauglustaine, I.S.A. Isaksen, P. Jöckel, J. Lelieveld, G. Myhre, E. Meijer, D. Olivié, M. Prather, C. Schnadt-Poberaj, K.P. Shine, J. Staehelin, Q. Tang, J. van Aardenne, P. van Velthoven, R. SausenThe impact of traffic emissions on atmospheric ozone and OH: Results from QUANTIFYAtmos. Chem. Phys., 9 (2009), pp. 3113-3136, 10.5194/acp-9-3113-2009
- Hoose and Möhler, 2012
C. Hoose, O. MöhlerHeterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experimentsAtmos. Chem. Phys., 12 (2012), pp. 9817-9854, 10.5194/acp-12-9817-2012
- Hough, 1989
A.M. HoughThe development of a two-dimensional global tropospheric model – 1. The model transportAtmos. Environ., 23 (1989), pp. 1235-1261, 10.1016/0004-6981(89)90150-9
- Hough, 1991
A.M. HoughDevelopment of a two-dimensional global tropospheric model: model chemistryJ. Geophys. Res. Atmos., 96 (1991), pp. 7325-7362, 10.1029/90JD01327
- Irvine et al., 2013
E.A. Irvine, B.J. Hoskins, K.P. ShineA Lagrangian analysis of ice-supersaturated air over the North AtlanticJ. Geophys. Res. Atmos., 119 (2013), pp. 90-100, 10.1002/2013JD020251
- IATA, 2019
IATAEconomic performance of the airline industry
- IATA, 2020
IATAOutlook for air travel in the next 5 years
- ICAO, 2018
ICAOICAO Carbon Emissions Calculator Methodology(2018)version 11, June 2018
- ICAO, 2019
ICAODestination Green the Next Chapter(2019)ICAO Environmental Report, Montreal
- IEA, 2019
IEAInternational Energy Agency. International Energy Agency Oil Information, 1960-2017[data collection](twelfth ed.) (2019), 10.5257/iea/oil/2019-1UK Data Service. SN: 5187
- IPCC, 1999
IPCCAviation and the global atmosphereJ.E. Penner, D.H. Lister, D.J. Griggs, D.J. Dokken, M. McFarland (Eds.), Intergovernmental Panel on Climate Change Special Report, Cambridge University Press, Cambridge, UK (1999)1999
- IPCC, 2001
IPCCUKJ.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X.Dai, K. Maskell, C.A. Johnson (Eds.), Climate Change 2001: the Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press (2001)
- IPCC, 2007
IPCCClimate change 2007. “Mitigation of climate changeB. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (Eds.), Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, UK (2007)
- IPCC, 2013
IPCCT.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A.Nauels, Y. Xia, V. Bex, P.M. Midgley (Eds.), Climate Change 2013: the Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2013)2013
- IPCC, 2018
IPCCV. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R.Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (Eds.), Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty(2018)2018
- Joos et al., 1996
F. Joos, M. Bruno, R. Fink, T.F. Stocker, U. Siegenthaler, C.LeQuéré, J.L. SarmientoAn efficient and accurate representation of complex oceanic and biospheric models for anthropogenic carbon uptakeTellus, 48B (1996), p. 397e417, 10.1034/j.1600-0889.1996.t01-2-00006.x
- Joos et al., 2013
F. Joos, R. Roth, J.S. Fuglestvedt, G.P. Peters, I.G. Enting, W. von Bloh, V. Brovkin, E.J. Burke, M. Eby, N.R. Edwards, T. Friedrich, T.L.Frolicher, P.R. Halloran, P.B. Holden, C. Jones, T. Kleinen, F.T. Mackenzie, K. Matsumoto, M. Meinshausen, G.-K. Plattner, A. Reisinger, J.Segschneider, G. Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A.Timmermann, A.J. WeaverCarbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysisAtmos. Chem. Phys., 13 (2013), pp. 2793-2825, 10.5194/acp-13-2793-2013
- Kapadia et al., 2016
Z.Z. Kapadia, D.V. Spracklen, S.R. Arnold, D.J. Borman, G.W.Mann, K.J. Pringle, S.A. Monks, C.L. Reddington, F. Benduhn, A. Rap, C.E. Scott, E.W. Butt, M. YoshiokaImpacts of aviation fuel sulfur content on climate and human healthAtmos. Chem. Phys., 16 (2016), pp. 10521-10541, 10.5194/acp-16-10521-2016
- Kärcher et al., 2015
B. Kärcher, U. Burkhardt, A. Bier, L. Bock, I.J. FordThe microphysical pathway to contrail formationJ. Geophys. Res. Atmos., 120 (2015), pp. 7893-7927, 10.1002/2015JD023491
- Kärcher, 2018
B. KärcherFormation and radiative forcing of contrail cirrusNat. Commun., 9 (2018), p. 1824, 10.1038/s41467-018-04068-0
- Khodayari et al., 2014b
A. Khodayari, S. Tilmes, S.C. Olsen, D.B. Phoenix, D.J.Wuebbles, J.-F. Lamarque, C.-C. ChenAviation 2006 NOx-induced effects on atmospheric ozone and HOx in community Earth system model (CESM)Atmos. Chem. Phys., 14 (2014), pp. 9925-9939, 10.5194/acp-14-9925-2014
- Khodayari et al., 2013
A. Khodayari, D.J. Wuebbles, S. Olsen, J.S. Fuglestvedt, T.Berntsen, M.T. Lund, I. Waitz, P. Wolfe, P.M. Forster, M. Meinshausen, D.S. Lee, L.L. LimIntercomparison of the capabilities of simplified climate models to project the effects of aviation CO2 on climateAtmos. Environ., 75 (2013), pp. 321-328, 10.1016/j.atmosenv.2013.03.055
- Khodayari et al., 2014a
A. Khodayari, S.C. Olsen, D.J. WuebblesEvaluation of aviation NOx-induced radiative forcings for 2005 and 2050Atmos. Environ., 91 (2014), pp. 95-103, 10.1016/j.atmosenv.2014.03.044
- Köhler et al., 2008
M.O. Köhler, G. Rädel, O. Dessens, K.P. Shine, H.L. Rogers, O. Wild, J.A. PyleImpact of perturbation of nitrogen oxide emissions from global aviationJ. Geophys. Res. Atmos., 113 (2008), p. D11305, 10.1029/2007JD009140
- Köhler et al., 2013
M.O. Köhler, G. Rädel, K.P. Shine, H.L. Rogers, J.A. PyleLatitudinal variation of the effect of aviation NOxemissions on atmospheric ozone and methane and related climate metricsAtmos. Environ., 64 (2013), pp. 1-9, 10.1016/j.atmosenv.2012.09.013
- Lamarque et al., 2010
J.-F. Lamarque, T.C. Bond, V. Eyring, C. Granier, A. Heil, Z. Klimont, D. Lee, C. Liousse, A. Mieville, B. Owen, M.G. Schultz, D.Shindell, S.J. Smith, E. Stehfest, J. van Aardenne, O.R. Cooper, M.Kainuma, N. Mahowald, J.R. McConnell, V. Naik, K. Riahi, D.P. van VuurenHistorical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and applicationAtmos. Chem. Phys., 10 (2010), pp. 7017-7039, 10.5194/acp-10-7017-2010
- Lamquin et al., 2012
N. Lamquin, C.J. Stubenrauch, K. Gierens, U. Burkhardt, H. SmitA global climatology of upper tropospheric ice supersaturation occurrence inferred from the Atmospheric Infrared Sounder calibrated by MOZAICAtmos. Chem. Phys., 12 (2012), pp. 381-405, 10.5194/acp-12-381-2012
- Lauder et al., 2012
A.R. Lauder, I.G. Enting, J.O. Carter, N. Clisby, A.L. Cowie, B.K. Henry, M.R. RaupachOffsetting methane emissions — an alternative to emission equivalence metricsInt. J. Greenh. Gas Contr., 12 (2012), pp. 419-429, 10.1016/j.ijggc.2012.11.028
- Lee et al., 2009
D.S. Lee, D. Fahey, P.M. Forster, P.J. Newton, R.C.N. Wit, L.L.Lim, B. Owen, R. SausenAviation and global climate change in the 21st centuryAtmos. Environ., 43 (2009), pp. 3520-3537, 10.1016/j.atmosenv.2009.04.024
- Lee et al., 2010
D.S. Lee, G. Pitari, V. Grewe, K. Gierens, J.E. Penner, A. Petzold, M. Prather, U. Schumann, A. Bais, T. Berntsen, D. Iachetti, L.L. Lim, R.SausenTransport impacts on atmosphere and climate: AviationAtmos. Environ., 44 (2010), pp. 4678-4734, 10.1016/j.atmosenv.2009.06.005
- Le Quéré, 2018
C. Le Quéré, 76 othersGlobal carbon budget 2018Earth Syst. Sci. Data, 10 (2018), pp. 2141-2194, 10.5194/essd-10-2141-2018
- Le Quéré et al., 2020
C. Le Quéré, R.B. Jackson, M.W. Jones, A.J.P. Smith, S.Abernethy, R.M. Andrew, A.J. De-Gol1, D.R. Willis, Y. Shan, J.G. Canadell, P. Friedlingstein, F. Creutzig, G.P. PetersTemporary reduction in daily global CO2 emissions during the COVID-19 forced confinementNat. Clim. Change (2020), 10.1038/s41558-020-0797-x
- Lim et al., 2015
L.L. Lim, D.S. Lee, B. Owen, A. Skowron, S. Matthes, U.Burkhardt, S. Dietmuller, G. Pitari, G. Di Genova, D. Iachetti, I. Isaksen, O.A. SøvdeREACT4C: simplified mitigation studyTAC-4 Proceedings, June 22nd to 25th, 2015 (2015), pp. 181-185Bad Kohlgrub
- Liou et al., 2013
K.N. Liou, Y. Takano, Q. Yue, P. YangOn the radiative forcing of contrail cirrus contaminated by black carbonGeophys. Res. Lett., 40 (2013), pp. 778-784, 10.1002/GRL.50110
- Lund et al., 2017
M.T. Lund, B. Aamaas, T. Berntsen, L. Bock, U. Burkhardt, J.S.Fuglestvedt, K.P. ShineEmission metrics for quantifying regional climate impacts of aviationEarth Syst. Dynam., 8 (2017), pp. 547-563, 10.5194/esd-8-547-2017
- Mahrt et al., 2020
F. Mahrt, K. Kilchhofer, C. Marcolli, P. Grönquist, R.O. David, M. Rösch, U. Lohmann, Z.A. KanjiThe impact of cloud processing on the ice nucleation abilities of soot particles at cirrus temperaturesJ. Geophys. Res., 125 (2020), 10.1029/2019JD030922e2019JD030922
- Maier-Reimer and Hasselmann, 1987
E. Maier-Reimer, K. HasselmannTransport and storage of CO2 in the ocean—an inorganic ocean-circulation carbon cycle modelClim. Dynam., 2 (1987), pp. 63-90, 10.1007/BF01054491
- Matthes et al., 2017
M. Matthes, V. Grewe, K. Dahlmann, C. Frömming, E.Irvine, L. Lim, F. Linke, B. Lührs, B. Owen, K. Shine, S. Stromatas, H.Yamashita, F. YinA concept for multi-criteria environmental assessment of aircraft trajectoriesAerospace, 4 (42) (2017), 10.3390/aerospace4030042
- Markowicz and Witek, 2011
K.M. Markowicz, M.L. WitekSimulations of contrail optical properties and radiative forcing for various crystal shapesJ. Appl. Meteorol. Climatol., 50 (2011), pp. 1740-1755, 10.1175/2011JAMC2618.1
- Marquart et al., 2001
S. Marquart, R. Sausen, M. Ponater, V. GreweEstimate of the climate impact of the cryoplanesAero. Sci. Technol., 5 (2001), pp. 73-84, 10.1016/S1270-9638(00)01084-1
- Mastrandrea et al., 2011
M.D. Mastrandrea, K.J. Mach, G.K. Plattner, O.Edenhofer, T.F. Stocker, C.B. Field, K.L. Ebi, P.R. MatschossThe IPCC AR5 guidance note on consistent treatment of uncertainties: a common approach across the working groupsClimatic Change, 108 (2011), pp. 675-691, 10.1007/s10584-011-0178-6
- Meinshausen et al., 2011
M. Meinshausen, S.J. Smith, K. Calvin, J.S. Daniel, M.L.T. Kainuma, J.-F. Lamarque, K. Matsumoto, S.A. Montzka, S.C.B.Raper, K. Riahi, A. Thomson, G.J.M. Velders, D.P.P. van VuurenThe RCP greenhouse gas concentrations and their extensions from 1765 to 2300Climatic Change, 109 (2011), pp. 213-241, 10.1007/s10584-011-0156-z
- Millar et al., 2017
R.J. Millar, Z.R. Nicholls, P. Friedlingstein, M.R. AllenA modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissionsAtmos. Chem. Phys., 17 (2017), pp. 7213-7228, 10.5194/acp-17-7213-2017
- Miller et al., 2010
M. Miller, P. Brook, C. EyersReduction of Sulphur Limits in Aviation Fuel Standards (SULPHUR). EASA Research Project EASA.2008/C11European Aviation Safety Agency (2010)
- Minnis et al., 2013
P. Minnis, S.T. Bedka, D.P. Duda, K.M. Bedka, T. Chee, J.K.Ayers, R. Palikonda, D.A. Spangenberg, K.V. Khlopenkov, R. BoekeLinear contrail and contrail cirrus properties determined from satellite dataGeophys. Res. Lett., 40 (2013), pp. 3220-3226, 10.1002/grl.50569
- Möhler et al., 2005
O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathof, O.Stetzer, R. Wagner, M. Krämer, A. Mangold, V. Ebert, U. SchurathEffect of sulfuric acid coating on heterogenous ice nucleation by soot aerosol particlesJ. Geophys. Res., 110 (D11) (2005), 10.1029/2004JD005169
- Montzka et al., 2000
S.A. Montzka, C.M. Spivakovsky, J.H. Butler, J.W. Elkins, L.T. Lock, D.J. MondeelNew observational constraints for atmospheric hydroxyl on global and hemispherical scalesScience, 288 (2000), pp. 500-503, 10.1126/science.288.5465.500
- Moore et al., 2017
R.H. Moore, K.L. Thornhill, B. Weinzierl, D. Sauer, E.D’Ascoli, J. Kim, et al.Biofuel blending reduces particle emissions from aircraft engines at cruise conditionsNature, 543 (2017), pp. 411-415, 10.1038/nature21420
- Myhre et al., 2007
G. Myhre, J.S. Nilsen, L. Gulstad, K.P. Shine, B. Rognerud, I.S.A. IsaksenRadiative forcing due to stratospheric water vapor from CH4 oxidationGeophys. Res. Lett., 34 (2007), p. L01807, 10.1029/2006GL027472
- Myhre et al., 2009
G. Myhre, M. Kvalevåg, G. Rädel, J. Cook, K.P. Shine, H.Clark, F. Karcher, K. Markowicz, A. Kardas, P. Wolkenberg, Y. Balkanski, M. Ponater, P. Forster, A. Rap, R.R. de LeonIntercomparison of radiative forcing calculations of stratospheric water vapour and contrailsMeteorol. Z., 18 (2009), pp. 585-596, 10.1127/0941-2948/2009/0411
- Myhre et al., 2011
G. Myhre, K.P. Shine, G. Rädel, M. Gauss, I.S.A. Isaksen, Q.Tang, M.J. Prather, J.E. Williams, P. van Velthoven, O. Dessens, B. Koffi, S.Szopa, P. Hoor, V. Grewe, J. Borken-Kleefeld, T.K. Berntsen, J.S.FuglestvedtRadiative forcing due to changes in ozone and methane caused by the transport sectorAtmos. Environ., 45 (2011), pp. 387-394, 10.1016/j.atmosenv.2010.10.001
- Myhre et al., 2013
G. Myhre, D. Shindell, F.-M. Breon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A.Robock, G. Stephens, T. Takemura, H. ZhangAnthropogenic and natural radiative forcingClimate Change 2013: the Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press(2013)
- Newinger and Burkhardt, 2012
C. Newinger, U. BurkhardtSensitivity of contrail cirrus radiative forcing to air traffic schedulingJ. Geophys. Res. Atmos., 117 (2012), p. D10205, 10.1029/2011JD016736
- OECD, 2012
OECDGreen growth and the future of aviationPaper Prepared for the 27th Round Table on Sustainable Development Held at OECD Headquarters 23–24 January 2012, OECD (2012)
- Olivié et al., 2012
D.J.L. Olivié, D. Cariolle, H. Teyssèdre, D. Salas, A. Voldoire, H.Clark, D. Saint-Martin, M. Michou, F. Karcher, Y. Balkanski, M. Gauss, O.Dessens, B. Koffi, R. SausenModeling the climate impact of road transport, maritime shipping and aviation over the period 1860–2100 with an AOGCMAtmos. Chem. Phys., 12 (2012), pp. 1449-1480, 10.5194/acp-12-1449-2012
- Olsen et al., 2013
S.C. Olsen, G.P. Brasseur, D.J. Wuebbles, S.R.H. Barrett, H.Dang, S.D. Eastham, M.Z. Jacobson, A. Khodayari, H. Selkirk, A. Sokolov, N. UngerComparison of model estimates of the effects of aviation emissions on atmospheric ozone and methaneGeophys. Res. Lett., 40 (2013), pp. 6004-6009, 10.1002/2013GL057660
- Penner et al., 2009
J.E. Penner, Y. Chen, M. Wang, X. LiuPossible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcingAtmos. Chem. Phys., 9 (2009), pp. 879-896, 10.5194/acp-9-879-2009
- Penner et al., 2018
J.E. Penner, C. Zhou, A. Garnier, D.L. MitchellAnthropogenic aerosol indirect effects in cirrus cloudsJ. Geophys. Res. Atmos., 123 (2018), pp. 11,652-11,677, 10.1029/2018JD029204
- Petzold et al., 2005
A. Petzold, M. Gysel, X. Vancassel, R. Hitzenberger, H.Puxbaum, S. Vrochticky, E. Weingartner, U. Baltensperger, P. MirabelOn the effects of organic matter and sulphur-containing compounds on the CCN activation of combustion particlesAtmos. Chem. Phys., 5 (2005), pp. 3187-3203, 10.5194/acp-5-3187-2005
- Pitari et al., 2015
G. Pitari, D. Iachetti, G. Genova, N. De Luca, O.A. Søvde, Ø.Hodnebrog, D.S. Lee, L.L. LimImpact of coupled NOx/aerosol aircraft emissions on ozone photochemistry and radiative forcingAtmosphere, 6 (2015), pp. 751-782, 10.3390/atmos6060751
- Pitari et al., 2017
G. Pitari, I. Cionni, G. Di Genova, O.A. Søvde, L. LimRadiative forcing from aircraft emissions of NOx: model calculations with CH4 surface flux boundary conditionMeteorol. Z., 26 (6) (2017), pp. 663-687, 10.1127/metz/2016/0776
- Pomroy and Illingworth, 2000
H.R. Pomroy, J.A. IllingworthIce cloud inhomogeneity: quantifying bias in emissivity from radar observationsGeophys. Res. Lett., 27 (2000), pp. 2101-2104, 10.1029/1999GL011149
- Ponater et al., 2005
M. Ponater, S. Marquart, R. Sausen, U. SchumannOn contrail climate sensitivityGeophys. Res. Lett., 32 (2005), p. L10706, 10.1029/2005GL022580
- Ponater et al., 2006
M. Ponater, S. Pechtl, R. Sausen, U. Schumann, G. HüttigPotential of the cryoplane technology to reduce aircraft climate impact: a state-of-the-art assessmentAtmos. Environ., 40 (2006), pp. 6928-6944, 10.1016/j.atmosenv.2006.06.036
- Ponater et al., 2020
M. Ponater, M. Bickel, L. Bock, U. BurkhardtTowards determining the efficacy of contrail cirrusS. Matthes, A. Blum (Eds.), Making Aviation Environmentally Sustainable, 3rd ECATS Conference, Book of Abstracts, vol. 1, 978-1-910029-58-9(2020)51-44
- Prather, 1994
M.J. PratherLifetimes and eigenstates in atmospheric chemistryGeophys. Res. Lett., 21 (1994), pp. 801-804, 10.1029/94GL00840
- Prather et al., 2001
M. Prather, D. Ehhalt, F. Dentener, R. Derwent, E.DlugokenckyAtmospheric chemistry and greenhouse gasesJ.T. Houghton (Ed.), Climate Change 2001: the Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2001), pp. 239-287
- Prather et al., 2012
M.J. Prather, C.D. Holmes, J. HsuReactive greenhouse gas scenarios: systematic exploration of uncertainties and the role of atmospheric chemistryGeophys. Res. Lett., 39 (2012), p. L09803, 10.1029/2012GL051440
- Rap et al., 2010
A. Rap, P.M. Forster, J.M. Haywood, A. Jones, O. BoucherEstimating the climate impact of linear contrails using the UK Met Office climate modelGeophys. Res. Lett., 37 (2010), p. L20703, 10.1029/2010GL045161
- Revelle and Suess, 1957
R. Revelle, H.E. SuessCarbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decadesTellus, 9 (1957), pp. 18-27, 10.1111/j.2153-3490.1957.tb01849.x
- Richardson et al., 2019
T.B. Richardson, P.M. Forster, C.J. Smith, A.C. Maycock, T. Wood, T. Andrews, O. Boucher, G. Faluvegi, D. Fläschner, Ø.Hodnegrog, M. Kasoar, A. Kirkevåg, J.-F. Lamarque, J. Mülmenstädt, G.Myhre, D. Olivié, R.W. Portmann, B.H. Samset, D. Shawki, D. Shindell, P.Stier, T. Takemura, A. Voulgarakis, D. Watson-ParrisEfficacy of climate forcings in PDRMIP modelsJ. Geophys. Res.: Atmospheres, 124 (2019)
- Righi et al., 2013
M. Righi, J. Hendricks, R. SausenThe global impact of the transport sectors on atmospheric aerosol: simulations for year 2000 emissionsAtmos. Chem. Phys., 13 (2013), pp. 9939-9970, 10.5194/acp-13-9939-2013
- Sander et al., 2006
S.P. Sander, R.R. Friedl, A.R. Ravishankara, D.M. Golden, C.E.Kolb, M.J. Kurylo, M.J. Molina, G.K. Moortgat, B.J. Finlayson-PittsChemical Kinetics and Photochemical Data for Use in Atmospheric StudiesJPL Publ (2006)06–2, No. 15
- Sausen and Schumann, 2000
R. Sausen, U. SchumannEstimates of the climate response to aircraft CO2 and NOxemissions scenariosClimatic Change, 44 (2000), pp. 27-58
- Sausen et al., 2005
R. Sausen, I. Isaksen, V. Grewe, D. Hauglustaine, D.S. Lee, G.Myhre, M.O. Köhler, G. Pitari, U. Schumann, F. Stordal, C. ZerefosAviation radiative forcing in 2000: an update on IPCC (1999)Meteorol. Z., 14 (2005), pp. 555-561, 10.1127/0941-2948/2005/0049
- Schumann et al., 2015
U. Schumann, J.E. Penner, Y. Chen, C. Zhou, K. GrafDehydration effects from contrails in a coupled contrail-climate modelAtmos. Chem. Phys., 15 (2015), pp. 11179-11199, 10.5194/acp-15-11179-2015
- Schumann et al., 2017
U. Schumann, R. Baumann, D. Baumgardner, S.T. Bedka, D.P. Duda, V. Freudenthaler, J.-F. Gayet, A.J. Heymsfield, P. Minnis, M.Quante, E. Raschke, H. Schlager, M. Vázquez-Navarro, C. Voigt, Z. WangProperties of individual contrails: a compilation of observations and some comparisonsAtmos. Chem. Phys., 17 (2017), pp. 403-438, 10.5194/acp-17-403-2017
- Shine et al., 2005
K.P. Shine, J.S. Fuglestvedt, K. Hailemariam, N. StuberAlternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gasesClimatic Change, 68 (2005), pp. 281-302, 10.1007/s10584-005-1146-9
- Skeie et al., 2017
R.B. Skeie, J. Fuglestvedt, T. Berntsen, G.P. Peters, R. Andrew, M. Allen, S. KallbekkenPerspective has a strong effect on the calculation of historical contributions to global warmingEnviron. Res. Lett., 12 (2017), 10.1088/1748-9326/aa5b0a024022
- Skowron et al., 2009
A. Skowron, D.S. Lee, J. Hurley“Aviation NOx global warming potential2nd International Conference on Transport, Atmosphere and Climate, 25–28 June 2009 (2009)Aachen/Maastricht, Germany/Netherlands
- Skowron et al., 2013
A. Skowron, D.S. Lee, R.R. de LeónThe assessment of the impact of aviation NOx on ozone and other radiative forcing responses–The importance of representing cruise altitudes accuratelyAtmos. Environ., 74 (2013), pp. 159-168, 10.1016/j.atmosenv.2013.03.034
- Skowron et al., 2015
A. Skowron, D.S. Lee, R.R. de LeónVariation of radiative forcings and global warming potentials from regional aviation NOx emissionsAtmos. Environ., 104 (2015), pp. 69-78, 10.1016/j.atmosenv.2014.12.043
- Søvde et al., 2014
O.A. Søvde, S. Matthes, A. Skowron, D. Iachetti, L. Lim, B.Owen, Ø. Hodnebrog, G. Di Genova, G. Pitari, D.S. Lee, G. Myhre, I.S.A.IsaksenAircraft emission mitigation by changing route altitude: a multi-model estimate of aircraft NOx emission impact on O3 photochemistryAtmos. Environ., 95 (2014), pp. 468-479, 10.1016/j.atmosenv.2014.06.049
- Smith et al., 2018
C.J. Smith, R.J. Kramer, G. Myhre, P.M. Forster, B.J. Soden, T.Andrews, O. Boucher, G. Faluvegi, D. Fläschner, Ø. Hodnebrog, M.Kasoar, V. Kharin, A. Kirkevåg, J.-F. Lamarque, J. Mülmenstädt, D. Olivié, T. Richardson, B.H. Samset, D. Shindell, P. Stier, T. Takemura, A.Voulgarakis, D. Watson-ParrisUnderstanding rapid adjustments to diverse forcing agentsGeophys. Res. Lett., 45 (2018), 10.1029/2018GL079826
- Stevenson et al., 1998
D.S. Stevenson, C.E. Johnson, W.J. Collins, R.G. Derwent, K.P. Shine, J.M. EdwardsEvolution of tropospheric ozone radiative forcingGeophys. Res. Lett., 25 (1998), pp. 3819-3822, 10.1029/1998GL900037
- Stevenson et al., 2004
D.S. Stevenson, R.M. Doherty, M.G. Sanderson, W.J.Collins, C.E. Johnson, R.G. DerwentRadiative forcing from aircraft NOx emissions: mechanisms and seasonal dependenceJ. Geophys. Res. Atmos., 109 (2004), p. D17307, 10.1029/2004JD004759
- Stordal et al., 2006
F. Stordal, M. Gauss, G. Myhre, E. Mancini, D.A.Hauglustaine, M.O. Köhler, T. Berntsen, E.J.G. Stordal, D. Iachetti, G.Pitari, I.S.A. IsaksenTRADEOFFs in climate effects through aircraft routing: forcing due to radiatively active gasesAtmos. Chem. Phys. Discuss., 6 (2006), pp. 10733-10771
- Stuber et al., 2005
N. Stuber, M. Ponater, R. SausenWhy radiative forcing might fail as a predictor of climate changeClim. Dynam., 24 (2005), pp. 497-510, 10.1007/s00382-004-0497-7
- Stuber et al., 2006
N. Stuber, P. Forster, G. Rädel, K. ShineThe importance of the diurnal and annual cycle of air traffic for contrail radiative forcingNature, 441 (2006), pp. 864-867, 10.1038/nature04877
- Teoh et al., 2020
R. Teoh, U. Schumann, A. Majumdat, M.E.J. StettlerMitigating the climate forcing of aircraft contrails by small-scale diversions and technology adoptionEnviron. Sci. Technol., 54 (2020), pp. 2941-2950, 10.1021/acs.est.9b05608
- Teoh et al., 2019
R. Teoh, M.E.J. Stettler, A. Majumdar, U. Schumann, B. Graves, A.M. BoiesA methodology to relate black carbon particle number and mass emissionsJ. Aerosol Sci., 132 (2019), pp. 44-59, 10.1016/j.jaerosci.2019.03.006
- Tesche et al., 2016
M. Tesche, P. Achtert, P. Glantz, K.J. NooneAviation effects on already-existing cirrus cloudsNat. Commun., 7 (2016), p. 12016, 10.1038/ncomms12016
- UKDS, 2016
UKDS2016
- UNFCCC
UNFCCC
- Unger et al., 2010
N. Unger, T.C. Bond, J.S. Wang, D.M. Koch, S. Menon, D.T.Shindell, S. BauerAttribution of climate forcing to economic sectorsProc. Natl. Acad. Sci. U.S.A., 107 (2010), pp. 3382-3387, 10.1073/pnas.0906548107
- Unger, 2011
N. UngerGlobal climate impact of civil aviation for standard and desulfurized jet fuelGeophys. Res. Lett., 38 (2011), pp. 1-6, 10.1029/2011GL049289
- Unger et al., 2013
N. Unger, Y. Zhao, H. DangMid-21st century chemical forcing of climate by the civil aviation sectorGeophys. Res. Lett., 40 (2013), pp. 641-645, 10.1002/grl.50161
- Unterstrasser, 2014
S. UnterstrasserLarge-eddy simulation study of contrail microphysics and geometry during the vortex phase and consequences on contrail-to-cirrus transitionJ. Geophys. Res. Atmos., 119 (2014), pp. 7537-7555, 10.1002/2013JD021418
- Voulgarakis et al., 2013
A. Voulgarakis, V. Naik, J.-F. Lamarque, D.T. Shindell, P.J.Young, M.J. Prather, O. Wild, R.D. Field, D. Bergmann, P. Cameron-Smith, I. Cionni, W.J. Collins, S.B. Dalsøren, R.M. Doherty, V. Eyring, G.Faluvegi, G.A. Folberth, L.W. Horowitz, B. Josse, I.A. McKenzie, T.Nagashima, D.A. Plummer, M. Righi, S.T. Rumbold, D.S. Stevenson, S.A.Strode, K. Sudo, S. Szopa, G. ZengAnalysis of present-day and future OH and methane lifetime in the ACCMIP simulationsAtmos. Chem. Phys., 13 (2013), pp. 2563-2587, 10.5194/acp-13-2563-2013
- Wilcox et al., 2012
L. Wilcox, K.P. Shine, B.J. HoskinsRadiative forcing due to aviation water vapour emissionsAtmos. Environ., 63 (2012), pp. 1-13, 10.1016/j.atmosenv.2012.08.072
- Wild et al., 2001
O. Wild, M.J. Prather, H. AkimotoIndirect long-term global radiative cooling from NOxemissionsGeophys. Res. Lett., 28 (2001), pp. 1719-1722, 10.1029/2000GL012573
- Xie et al., 2016
B. Xie, H. Zhang, Z. Wang, S. Zhao, Q. FuA modelling study of effective radiative forcing and climate response due to tropospheric ozoneAdv. Atmos. Sci., 33 (2016), pp. 819-828, 10.1007/s00376-016-5193-0
- Yin et al., 2018
F. Yin, V. Grewe, C. Frömming, H. YamashitaImpact on flight trajectory characteristics when avoiding the formation of persistent contrails for transatlantic routesTransport. Res. Transport Environ., 65 (2018), pp. 466-484, 10.1016/j.trd.2018.09.017
- Zhou and Penner, 2014
C. Zhou, J.E. PennerAircraft soot indirect effect on large-scale cirrus clouds: is the indirect forcing by aircraft soot positive or negative?J. Geophys. Res. Atmos., 119 (2014), pp. 11,303-11,320, 10.1002/2014JD021914
“We MUST respect this earth - it is all we have
Claudio Dametto - South Australia
“I will always Vote to Preserve Our World.
Liam McGregor - Western Australia
“A simple message that even a politician can understand
Felicity Crombach - Victoria
“Please show you care about our future generations!!
Phil Harmer - New South Wales
“Save our world , Life & health before profits.
Kerry Lillian - New South Wales
“Close down all coal mines and Do not mine gas . Make these Companies
Daniel Johnson - New South Wales
“We want carbon free energy!
Edan Clarke - New South Wales
“Feels good to be taking a voter action step
Beaver Hudson - New South Wales
“Great Initiative. Let’s Hold elected officials Accountable to their bosses, us!
John Paul Posada - New South Wales
“We need actions not words we need honest democratic govt We need a pm
Bob Pearce - South Australia
“Thank you for this great resource. I was feeling helpless. Even this small step
Silvia Anderson - Victoria
“If political parties continue receiving political donations, we will rarely have politicians working for
Dan Chicos - New South Wales
“I only vote for people who will take urgent action to restore a safe
Susie Burke - Victoria
“Current government is not representing the opinion of the majority of Australian to meet
Neil Price - Tasmania
“We are fighting to rescue our kids' future from those who seek to steal
Vanessa Norimi - Queensland
“No time to waste Now or Never My vote is for NOW
Rosalie White - Victoria
“I am only 9 but I already care
Ava Bell - New South Wales
“From New Lambton Uniting Church - Caring for our world is a moral imperative.
Niall McKay - New South Wales
“Our federal govt is an International climate Embarrassment - its about time they stepped
Oriana Tolo - Victoria
“Vote earth this time!
Sue Cooke - Queensland
“We are in one on the wealthiest countries in the world. we have the
rowan huxtable - New South Wales
“The climate Emergency is the public health opportunity and urgent priority of the 21st
Mike Forrester - Victoria
“If they want my vote they better act now
Barbara McNiff - New South Wales
“We need to act locally now for the earth. Our only home. Vote Earth
Anne Miller - New South Wales
“I often look at the places I've known all my life and see how
Jim Baird - New South Wales
“Strike one For people power!!! Democracy might prevail outside the current cronyism that faces
Lorraine Bridger - New South Wales
“Our federal politicians Are Afraid to make action on climate change a major election
Jennifer Martin - New South Wales
“climate election, let's go!
Fahimah Badrulhisham - New South Wales
“Great to see this website that is a focus on action for climate change
Lynette Sinclair - New South Wales
“Let’s show politicians and the Murdoch media that climate change is by far the
Jane Aitken - Australian Capital Territory
“If you want to stay in power You need to take action to stop
Jane Bulter - New South Wales
“We are all that stands between terminal climate change and the vulnerable. We are
Carol Khan - Queensland
“We need a Government that Believes this is real and not taking money from
Ken Gray - New South Wales
“I'm voting for my childrens future
Anneliese Alexander - New South Wales