References

  1. Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).

    Article ADS CAS PubMed Google Scholar

  2. Puma, M. J., Bose, S., Chon, S. Y. & Cook, B. I. Assessing the evolving fragility of the global food system. Environ. Res Lett. 10, 024007 (2015).

    Article ADS Google Scholar

  3. Bren d’Amour, C., Wenz, L., Kalkuhl, M., Christoph Steckel, J. & Creutzig, F. Teleconnected food supply shocks. Environ. Res Lett. 11, 035007 (2016).

    Article ADS Google Scholar

  4. Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Chang Rep. 2, 242–259 (2016).

    Article Google Scholar

  5. Lehmann, J., Coumou, D. & Frieler, K. Increased record-breaking precipitation events under global warming. Clim. Change 132, 501–515 (2015).

    Article ADS Google Scholar

  6. IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. (eds. Field, C. B., Barros, V., Stocker, T. F. & Dahśe, Q., eds.) (Cambridge University Press, 2012). https://doi.org/10.1017/CBO9781139177245.

  7. Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).

    Article ADS CAS PubMed Google Scholar

  8. Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D. & Diffenbaugh N. S. Multidimensional risk in a nonstationary climate: joint probability of increasingly severe warm and dry conditions. Sci Adv. 4. https://doi.org/10.1126/sciadv.aau3487 (2018).

  9. Rogers, C. D. W., Kornhuber, K., Perkins-Kirkpatrick, S. E., Loikith, P. C. & Singh, D. Six-fold increase in historical Northern Hemisphere concurrent large heatwaves driven by warming and changing atmospheric circulations. J Clim. 1–39. https://doi.org/10.1175/jcli-d-21-0200.1 (2021).

  10. Singh, J., Ashfaq, M., Skinner, C. B., Anderson, W. B. & Singh, D. Amplified risk of spatially compounding droughts during co-occurrences of modes of natural ocean variability. npj Clim. Atmos. Sci. 4, 1–14 (2021).

    Article Google Scholar

  11. Ortiz-Bobea, A., Wang, H., Carrillo, C. M. & Ault, T. R. Unpacking the climatic drivers of US agricultural yields. Environ. Res. Lett. 14. https://doi.org/10.1088/1748-9326/ab1e75(2019).

  12. Rigden, A. J., Mueller, N. D., Holbrook, N. M., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).

    Article CAS PubMed Google Scholar

  13. Lesk, C. et al. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food 2, 683–691 (2021).

    Article PubMed Google Scholar

  14. Raymond, C. et al. Understanding and managing connected extreme events. Nat. Clim. Chang 10, 611–621 (2020).

    Article ADS Google Scholar

  15. Mehrabi, Z. Food system collapse. Nat. Clim. Chang 10, 16–17 (2020).

    Article ADS Google Scholar

  16. Anderson, W. B., Seager, R., Baethgen, W., Cane, M. & You, L. Synchronous crop failures and climate-forced production variability. Sci. Adv. 5, 1–10 (2019).

    Article Google Scholar

  17. Gaupp F., Pflug, G., Hochrainer-stigler, S., Hall, J. & Dadson, S. Dependency of crop production between global breadbaskets: a copula approach for the assessment of global and regional risk pools. Risk Anal. 37, 2212–2228 (2017).

  18. Tigchelaar, M., Battisti, D. S., Naylor, R. L. & Ray, D. K. Future warming increases probability of globally synchronized maize production shocks. Proc. Natl Acad. Sci. USA115, 6644–6649 (2018).

    Article ADS PubMed PubMed Central Google Scholar

  19. Kornhuber, K. et al. Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Clim. Chang. 10, 48–53 (2020).

    Article ADS Google Scholar

  20. Saeed, S., Van Lipzig, N., Müller, W. A., Saeed, F. & Zanchettin, D. Influence of the circumglobal wave-train on European summer precipitation. Clim. Dyn. 43, 503–515 (2014).

    Article Google Scholar

  21. White, R. H., Kornhuber, K., Martius, O. & Wirth, V. From atmospheric waves to heatwaves: a waveguide perspective for understanding and predicting concurrent, persistent and extreme extratropical weather. Bull. Am. Meteorol. Soc. 2021:1-35. https://doi.org/10.1175/bams-d-21-0170.1

  22. Teng, H., Branstator, G., Wang, H., Meehl, G. A. & Washington, W. M. Probability of US heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci. 6, 1056–1061 (2013).

    Article ADS CAS Google Scholar

  23. Branstator, G. Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Clim. 15, 1893–1910 (2002).

    Article ADS Google Scholar

  24. Ding, Q. & Wang, B. Circumglobal teleconnection in the Northern Hemisphere summer. J. Clim. 18, 3483–3505 (2005).

    Article ADS Google Scholar

  25. Kornhuber, K. et al. Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett. 14, 054002 (2019).

  26. Wang, S.-Y., Davies, R. E. & Gillies, R. R. Identification of extreme precipitation threat across midlatitude regions based on short-wave circulations. J. Geophys. Res. Atmos. 118, 11059–11074 (2013).

    Article ADS Google Scholar

  27. Mitchell, D., Kornhuber, K., Huntingford, C. & Uhe, P. The day the 2003 European heatwave record was broken. Lancet Planet Heal 3, e290–e292 (2019).

    Article Google Scholar

  28. Di Capua, G. et al. Drivers behind the summer 2010 wave train leading to Russian heatwave and Pakistan flooding. npj Clim. Atmos Sci. 4. https://doi.org/10.1038/s41612-021-00211-9 (2021).

  29. Screen, J. A. & Simmonds, I. Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Clim. Chang. 4, 704–709 (2014).

    Article ADS Google Scholar

  30. Coumou, D., Petoukhov, V., Rahmstorf, S., Petri, S. & Schellnhuber, H. J. Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc. Natl Acad. Sci. 111, 12331–12336 (2014).

    Article ADS CAS PubMed PubMed Central Google Scholar

  31. Luo, F. et al. Summertime circumglobal Rossby waves in climate models: small biases in upper-level circulation create substantial biases in surface imprint. Weather Clim. Dyn. 3, 1–30 (2021).

  32. Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2. https://doi.org/10.1038/s43016-021-00400-y (2021).

  33. Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database(Food and Agriculture Organization of the United Nations, 1997).

  34. Jägermeyr, J. & Frieler, K. Spatial variations in crop growing seasons pivotal to reproduce global fluctuations in maize and wheat yields. Sci Adv. 4. https://doi.org/10.1126/sciadv.aat4517 (2018).

  35. Butler, E. E. & Huybers, P. Variations in the sensitivity of US maize yield to extreme temperatures by region and growth phase. Environ Res Lett. 10. https://doi.org/10.1088/1748-9326/10/3/034009 (2015).

  36. Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).

    Article ADS PubMed PubMed Central Google Scholar

  37. Xu, P. et al. Amplified waveguide teleconnections along the polar front jet favor summer temperature extremes over Northern Eurasia. Geophys. Res. Lett. 48. https://doi.org/10.1029/2021GL093735 (2021).

  38. Mann, M. E., et al. Projected changes in persistent extreme summer weather events: the role of quasi-resonant amplification. Sci. Adv. 4, 1–10 (2018).

  39. Kornhuber, K. & Tamarin-Brodsky, T. Future changes in Northern Hemisphere summer weather persistence linked to projected Arctic warming. Geophys Res Lett. 48, 1–12 (2021).

    Article Google Scholar

  40. Pfleiderer, P., Schleussner, C-F, Kornhuber, K. & Coumou, D. Summer weather becomes more persistent in a 2C world. Nat. Clim. Chang. 9, 666–671 (2019).

  41. Harvey, B. J., Cook, P., Shaffrey, L. C. & Schiemann, R. The response of the Northern Hemisphere storm tracks and jet streams to climate change in the CMIP3, CMIP5, and CMIP6 climate models. J. Geophys Res Atmos. 125, 1–10 (2020).

    Article Google Scholar

  42. Berg, A. et al. Impact of soil moisture-atmosphere interactions on surface temperature distribution. J. Clim. 27, 7976–7993 (2014).

    Article ADS Google Scholar

  43. Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C. & Vilà-Guerau de Arellano, J. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).

    Article ADS CAS Google Scholar

  44. Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Chang. 6, 317–322 (2016).

    Article ADS MathSciNet Google Scholar

  45. Philip, S. Y., Kew, S. F., Oldenborgh & Van, G. J. et al. Rapid attribution analysis of the extraordinary heatwave on the Pacific Coast of the US and Canada June 2021. World Weather Attrib. 119–123 (2021). https://www.worldweatherattribution.org/wp-content/uploads/NW-US-extreme-heat-2021-scientific-report-WWA.pdf.

  46. Li, J. & Thompson, D. W. J. Widespread changes in surface temperature persistence under climate change. Nature 599, 425–430 (2021).

    Article ADS CAS PubMed Google Scholar

  47. Yasunari T. J., et al. Relationship between circum-Arctic atmospheric wave patterns and large-scale wildfires in boreal summer. Environ Res Lett. 16. https://doi.org/10.1088/1748-9326/abf7ef (2021).

  48. Petoukhov, V. et al. Alberta wildfire 2016: Apt contribution from anomalous planetary wave dynamics. Sci. Rep. 8, 12375 (2018).

    Article ADS PubMed PubMed Central Google Scholar

  49. Ciavarella, A. et al. Prolonged Siberian heat of 2020 almost impossible without human influence. Clim. Change 166, 1–18 (2021).

    Article ADS Google Scholar

  50. Raymond, C. et al. Increasing spatiotemporal proximity of heat and precipitation extremes in a warming world quantified by a large model ensemble. Environ. Res Lett. 17, 035005 (2022).

    Article ADS Google Scholar

  51. Vogel, M. M., Zscheischler, J., Wartenburger, R., Dee, D. & Seneviratne, S. I. Concurrent 2018 hot extremes across Northern Hemisphere due to human-induced climate change. Earth’s Futur. 7, 692–703 (2019).

    Article ADS CAS Google Scholar

  52. Lau, W. K. M. & Kim, K.-M. The 2010 Pakistan flood and Russian heat wave: teleconnection of hydrometeorological extremes. J. Hydrometeorol. 13, 392–403 (2012).

    Article ADS Google Scholar

  53. Welton, G. The Impact of Russia’ s 2010 Grain Export Ban (2011).

  54. Beillouin D., Schauberger, B., Bastos, A., Ciais, P. & Makowski, D. Impact of extreme weather conditions on European crop production in 2018: Random forest—yield anomalies. Philos. Trans. R. Soc. B: Biol. Sci. 375. https://doi.org/10.1098/rstb.2019.0510(2020).

  55. Masson-Delmotte V., et al. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).

  56. Hausfather, Z., Drake, H. F., Abbott, T. & Schmidt, G. A. Evaluating the performance of past climate model projections. Geophys Res Lett. 47, 1–10 (2020).

    Article Google Scholar

  57. Hess, P., Drüke, M., Petri, S., Strnad, F. M. & Boers, N. Physically constrained generative adversarial networks for improving precipitation fields from Earth system models. Nat. Mach. Intell. 4, 828–839 (2022).

    Article Google Scholar

  58. Zappa, G. & Shepherd, T. G. Storylines of atmospheric circulation change for European regional climate impact assessment. J. Clim. 30, 6561–6577 (2017).

    Article ADS Google Scholar

  59. Weaver, C. P. et al. Improving the contribution of climate model information to decision making: the value and demands of robust decision frameworks. WIREs Clim. Chang. 4, 39–60 (2013).

    Article Google Scholar

  60. Hersbach, H. et al. The ERA5 global reanalysis. Q J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article ADS Google Scholar

  61. Lange S. WFDE5 over land merged with ERA5 over the ocean (W5E5). V 10 GFZ Data Servhttps://doi.org/10.5880/pik.2019.023 (2019).

  62. Cucchi, M. et al. WFDE5: bias adjusted ERA5 reanalysis data for impact studies. Earth Syst. Sci. Data 12, 1–32 (2020).

    Article ADS Google Scholar

  63. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article ADS Google Scholar

  64. Lange S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. Discuss. 1–24. https://doi.org/10.5194/gmd-2019-36 (2019).

  65. Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).

    Article ADS CAS PubMed Google Scholar

  66. Vautard, R., Yiou, P. & Ghil, M. Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Phys. D: Nonlinear Phenom. 58, 95–126 (1992).

    Article ADS Google Scholar