Solar thermal lobby wants a RET that values long duration storage and megawatt hours
Molecular Solar Thermal Energy Storage System [MOST]
This promising research was developed by a group of scientists in the Department of Chemistry and Chemical Engineering, Chalmers University of Technology, at Gothenburg, Sweden.
Abstract
The development of solar energy can potentially meet the growing requirements for a global energy system beyond fossil fuels, but necessitates new scalable technologies for solar energy storage. One approach is the development of energy storage systems based on molecular photoswitches, so-called molecular solar thermal energy storage (MOST). Successful outdoor testing shows proof of concept and illustrates that future implementation is feasible. The mechanism of the catalytic back reaction is modelled using density functional theory (DFT) calculations rationalizing the experimental observations.
Thermal energy can be used for a broad range of applications such as domestic heating, industrial process heating and in thermal power processes. One promising way to store solar thermal energy is so-called molecular solar thermal (MOST) energy storage systems, where a photoswitchable molecule absorbs sunlight and undergoes a chemical isomerization to a metastable high energy species. Here we present an optimized MOST system (providing a high energy density of up to 0.4 MJ kg−1), which can store solar energy for a month at room temperature and release the thermochemical energy “on demand” in a closed energy storage cycle. In addition to a full photophysical characterization, solar energy capture of the present system is experimentally demonstrated by flowing the MOST system through an outdoor solar collector (≈900 cm2 irradiated area). Moreover, catalyst systems were identified and integrated into an energy extraction device leading to high temperature gradients of up to 63 °C (83 °C measured temperature) with a short temperature ramp time of only a few minutes. The underlying step-by-step mechanism of the catalytic reaction is modelled in detail using quantum chemistry calculations, successfully rationalizing the experimental observations.
Macroscopic heat release in a molecular solar thermal energy storage system†
Zhihang Wang a, Anna Roffey a, Raul Losantos
b, Anders Lennartson a, Martyn Jevric a, Anne U. Petersen
a, Maria Quant
a, Ambra Dreos
a, Xin Wen
a, Diego Sampedro
b, Karl Börjesson
c and Kasper Moth-Poulsen
*a
aDepartment of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden. E-mail: kasper.moth-poulsen@chalmers.se
bDepartment of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, La Rioja, Spain. E-mail: diego.sampedro@unirioja.es
cDepartment of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 41296 Gothenburg, Sweden
Abstract
The development of solar energy can potentially meet the growing requirements for a global energy system beyond fossil fuels, but necessitates new scalable technologies for solar energy storage. One approach is the development of energy storage systems based on molecular photoswitches, so-called molecular solar thermal energy storage (MOST). Here we present a novel norbornadiene derivative for this purpose, with a good solar spectral match, high robustness and an energy density of 0.4 MJ kg−1. By the use of heterogeneous catalyst cobalt phthalocyanine on a carbon support, we demonstrate a record high macroscopic heat release in a flow system using a fixed bed catalytic reactor, leading to a temperature increase of up to 63.4 °C (83.2 °C measured temperature). Successful outdoor testing shows proof of concept and illustrates that future implementation is feasible. The mechanism of the catalytic back reaction is modelled using density functional theory (DFT) calculations rationalizing the experimental observations.
Broader contextThermal energy can be used for a broad range of applications such as domestic heating, industrial process heating and in thermal power processes. One promising way to store solar thermal energy is so-called molecular solar thermal (MOST) energy storage systems, where a photoswitchable molecule absorbs sunlight and undergoes a chemical isomerization to a metastable high energy species. Here we present an optimized MOST system (providing a high energy density of up to 0.4 MJ kg−1), which can store solar energy for a month at room temperature and release the thermochemical energy “on demand” in a closed energy storage cycle. In addition to a full photophysical characterization, solar energy capture of the present system is experimentally demonstrated by flowing the MOST system through an outdoor solar collector (≈900 cm2 irradiated area). Moreover, catalyst systems were identified and integrated into an energy extraction device leading to high temperature gradients of up to 63 °C (83 °C measured temperature) with a short temperature ramp time of only a few minutes. The underlying step-by-step mechanism of the catalytic reaction is modelled in detail using quantum chemistry calculations, successfully rationalizing the experimental observations. |
References
- United Nations, Adoption of the Paris Agreement, 2015.
- S. N. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 15729–15735 CrossRef PubMed.
- International Energy Agency, Technology Roadmap Solar Thermal Electricity, 2014.
- K. Moth-Poulsen, Molecular Devices for Solar Energy Conversion and Storage, 2018, ch. 9 Search PubMed.
- T. J. Kucharski, N. Fettalis, A. M. Kolpak, J. O. Zheng, D. G. Nocera and J. C. Grossman, Nat. Chem., 2014, 6, 441–447 CrossRef CAS PubMed.
- Z. Yoshida, J. Photochem., 1985, 29, 27–40 CrossRef CAS.
- A. Dreos, K. Börjesson, Z. Wang, A. Roffey, Z. Norwood, D. Kushnir and K. Moth-Poulsen, Energy Environ. Sci., 2017, 10, 728–734 RSC.
- M. Quant, A. Lennartson, A. Dreos, M. Kuisma, P. Erhart and K. Moth-Poulsen, Chem. – Eur. J., 2016, 22, 13265–13274 CrossRef CAS PubMed.
- A. Vlasceanu, S. L. Broman, A. S. Hansen, A. B. Skov, M. Cacciarini, A. Kadziola, H. G. Kjaergaard, K. V. Mikkelsen and M. B. Nielsen, Chem. – Eur. J., 2016, 22, 10796–10800 CrossRef CAS PubMed.
- R. R. Islangulov and F. N. Castellano, Angew. Chem., Int. Ed., 2006, 45, 5957–5959 CrossRef CAS PubMed.
- H. Taoda, K. Hayakawa, K. Kawase and H. Yamakita, J. Chem. Inf. Comput. Sci., 1987, 20, 265–270 CAS.
- K. Masutani, M. Morikawa and N. A. Kimizuka, Chem. Commun., 2014, 50, 15803–15806 RSC.
- K. Edel, X. Yang, J. S. A. Ishibashi, A. N. Lamm, C. Maichle-Mössmer, Z. X. Giustra, S. Liu and H. F. Bettinger, Angew. Chem., Int. Ed., 2018, 57, 5296–5300 CrossRef CAS PubMed.
- K. Moth-Poulsen, D. oso, K. Börjesson, N. Vinokurov, S. K. Meier, A. Majumdar, K. P. C. Vollhardtc and R. A. Segalman, Energy Environ. Sci., 2012, 5, 8534–8537 RSC.
- A. Lennartson, A. Roffey and K. Moth-Poulsen, Tetrahedron Lett., 2015, 56, 1457–1465 CrossRef CAS.
- O. Brummel, D. Besold, T. Döpper, Y. Wu, S. Bochmann, F. Lazzari, F. Waidhas, U. Bauer, P. Bachmann, C. Papp, H. Steinrück, A. Görling, J. Libuda and J. Bachmann, ChemSusChem, 2016, 9, 1424–1432 CrossRef CAS PubMed.
- S. Miki, Y. Asako, M. Morimoto, T. Ohno, Z. Yoshida, T. Maruyama, M. Fukuoka and T. Takada, Bull. Chem. Soc. Jpn., 1988, 61, 973–981 CrossRef CAS.
- D. J. Fife, K. W. Morse and W. M. Moore, J. Am. Chem. Soc., 1983, 105, 7404–7407 CrossRef CAS.
- H. Ken-ichi, Y. Asami and Y. Osamu, Tetrahedron Lett., 1988, 29, 4109–4112 CrossRef.
- S. Miki, T. Maruyama, T. Ohno, T. Tohma, S. Toyama and Z. Yoshida, Chem. Lett., 1988, 861–864 CrossRef CAS.
- V. A. Bren’, A. D. Dubonosov, V. I. Minkin and V. A. Chernoivanov, Russ. Chem. Rev., 1991, 60, 451–469 CrossRef.
- E. J. Wucherer and A. Wilson, U.S. Air Force Research Laboratory, Edwards Air Force Base, California, 1998.
- V. Gray, A. Lennartson, P. Ratanalert, K. Börjesson and K. Moth-Poulsen, Chem. Commun., 2014, 50, 5330–5332 RSC.
- F. Ghani, J. Kristen and H. Riegler, J. Chem. Eng. Data, 2012, 57, 439–449 CrossRef CAS.
- A. L. Tchougreeff, A. M. Tokmachev and R. R. Dronskowski, Int. J. Quantum Chem., 2013, 113, 1833–1846 CrossRef CAS.
- I. Antol, J. Comput. Chem., 2013, 34, 1439–1445 CrossRef CAS PubMed.
- K. Jorner, A. Dreos, R. Emanuelsson, O. L. Bakouri, I. F. Galván, K. Börjesson, F. Feixas, R. Lindh, B. Zietz, K. Moth-Poulsen and H. Ottosson, J. Mater. Chem. A, 2017, 5, 12369–12378 RSC.
- M. Kuisma, A. Lundin, K. Moth-Poulsen, P. Hyldgård and P. Erhart, ChemSusChem, 2016, 14, 1786–1794 CrossRef PubMed.
- M. J. Kuisma, A. M. Lundin, K. Moth-Poulsen, P. Hyldgaard and P. Erhart, J. Phys. Chem. C, 2016, 120, 3635–3645 CrossRef CAS PubMed.
“We MUST respect this earth - it is all we have
Claudio Dametto - South Australia
“I will always Vote to Preserve Our World.
Liam McGregor - Western Australia
“A simple message that even a politician can understand
Felicity Crombach - Victoria
“Please show you care about our future generations!!
Phil Harmer - New South Wales
“Save our world , Life & health before profits.
Kerry Lillian - New South Wales
“Close down all coal mines and Do not mine gas . Make these Companies
Daniel Johnson - New South Wales
“We want carbon free energy!
Edan Clarke - New South Wales
“Feels good to be taking a voter action step
Beaver Hudson - New South Wales
“Great Initiative. Let’s Hold elected officials Accountable to their bosses, us!
John Paul Posada - New South Wales
“We need actions not words we need honest democratic govt We need a pm
Bob Pearce - South Australia
“Thank you for this great resource. I was feeling helpless. Even this small step
Silvia Anderson - Victoria
“If political parties continue receiving political donations, we will rarely have politicians working for
Dan Chicos - New South Wales
“I only vote for people who will take urgent action to restore a safe
Susie Burke - Victoria
“Current government is not representing the opinion of the majority of Australian to meet
Neil Price - Tasmania
“We are fighting to rescue our kids' future from those who seek to steal
Vanessa Norimi - Queensland
“No time to waste Now or Never My vote is for NOW
Rosalie White - Victoria
“I am only 9 but I already care
Ava Bell - New South Wales
“From New Lambton Uniting Church - Caring for our world is a moral imperative.
Niall McKay - New South Wales
“Our federal govt is an International climate Embarrassment - its about time they stepped
Oriana Tolo - Victoria
“Vote earth this time!
Sue Cooke - Queensland
“We are in one on the wealthiest countries in the world. we have the
rowan huxtable - New South Wales
“The climate Emergency is the public health opportunity and urgent priority of the 21st
Mike Forrester - Victoria
“If they want my vote they better act now
Barbara McNiff - New South Wales
“We need to act locally now for the earth. Our only home. Vote Earth
Anne Miller - New South Wales
“I often look at the places I've known all my life and see how
Jim Baird - New South Wales
“Strike one For people power!!! Democracy might prevail outside the current cronyism that faces
Lorraine Bridger - New South Wales
“Our federal politicians Are Afraid to make action on climate change a major election
Jennifer Martin - New South Wales
“climate election, let's go!
Fahimah Badrulhisham - New South Wales
“Great to see this website that is a focus on action for climate change
Lynette Sinclair - New South Wales
“Let’s show politicians and the Murdoch media that climate change is by far the
Jane Aitken - Australian Capital Territory
“If you want to stay in power You need to take action to stop
Jane Bulter - New South Wales
“We are all that stands between terminal climate change and the vulnerable. We are
Carol Khan - Queensland
“We need a Government that Believes this is real and not taking money from
Ken Gray - New South Wales
“I'm voting for my childrens future
Anneliese Alexander - New South Wales