Solar Thermal Energy Storage: What is it?, and how incentives can make it a practical solution.

Solar thermal lobby wants a RET that values long duration storage and megawatt hours


 

Molecular Solar Thermal Energy Storage System [MOST]

According to the 2015 United Nations Climate Change Conference (COP21) Paris agreement on climate change, global emissions must be reduced by 60% prior to 2050.1 The energy consumption is, however, predicted to double in the next 40 years due to an increasing world population.2 For this reason, it is prudent to explore other sustainable energy sources, in addition to electricity generated by either wind power or solar cells.

This promising research was developed by a group of scientists in the Department of Chemistry and Chemical Engineering, Chalmers University of Technology, at Gothenburg, Sweden.

Abstract
The development of solar energy can potentially meet the growing requirements for a global energy system beyond fossil fuels, but necessitates new scalable technologies for solar energy storage. One approach is the development of energy storage systems based on molecular photoswitches, so-called molecular solar thermal energy storage (MOST). Successful outdoor testing shows proof of concept and illustrates that future implementation is feasible. The mechanism of the catalytic back reaction is modelled using density functional theory (DFT) calculations rationalizing the experimental observations.

Thermal energy can be used for a broad range of applications such as domestic heating, industrial process heating and in thermal power processes. One promising way to store solar thermal energy is so-called molecular solar thermal (MOST) energy storage systems, where a photoswitchable molecule absorbs sunlight and undergoes a chemical isomerization to a metastable high energy species. Here we present an optimized MOST system (providing a high energy density of up to 0.4 MJ kg−1), which can store solar energy for a month at room temperature and release the thermochemical energy “on demand” in a closed energy storage cycle. In addition to a full photophysical characterization, solar energy capture of the present system is experimentally demonstrated by flowing the MOST system through an outdoor solar collector (≈900 cm2 irradiated area). Moreover, catalyst systems were identified and integrated into an energy extraction device leading to high temperature gradients of up to 63 °C (83 °C measured temperature) with a short temperature ramp time of only a few minutes. The underlying step-by-step mechanism of the catalytic reaction is modelled in detail using quantum chemistry calculations, successfully rationalizing the experimental observations.


Macroscopic heat release in a molecular solar thermal energy storage system

Zhihang Wang a, Anna Roffey a, Raul Losantos b, Anders Lennartson a, Martyn Jevric a, Anne U. Petersen a, Maria Quanta, Ambra Dreos a, Xin Wen a, Diego Sampedro b, Karl Börjesson c and Kasper Moth-Poulsen *a
aDepartment of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden. E-mail: kasper.moth-poulsen@chalmers.se
bDepartment of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, La Rioja, Spain. E-mail: diego.sampedro@unirioja.es
cDepartment of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 41296 Gothenburg, Sweden

Received 6th April 2018 , Accepted 15th August 2018 The Royal Society of Chemistry 2019

Abstract

The development of solar energy can potentially meet the growing requirements for a global energy system beyond fossil fuels, but necessitates new scalable technologies for solar energy storage. One approach is the development of energy storage systems based on molecular photoswitches, so-called molecular solar thermal energy storage (MOST). Here we present a novel norbornadiene derivative for this purpose, with a good solar spectral match, high robustness and an energy density of 0.4 MJ kg−1. By the use of heterogeneous catalyst cobalt phthalocyanine on a carbon support, we demonstrate a record high macroscopic heat release in a flow system using a fixed bed catalytic reactor, leading to a temperature increase of up to 63.4 °C (83.2 °C measured temperature). Successful outdoor testing shows proof of concept and illustrates that future implementation is feasible. The mechanism of the catalytic back reaction is modelled using density functional theory (DFT) calculations rationalizing the experimental observations.


Broader context

Thermal energy can be used for a broad range of applications such as domestic heating, industrial process heating and in thermal power processes. One promising way to store solar thermal energy is so-called molecular solar thermal (MOST) energy storage systems, where a photoswitchable molecule absorbs sunlight and undergoes a chemical isomerization to a metastable high energy species. Here we present an optimized MOST system (providing a high energy density of up to 0.4 MJ kg−1), which can store solar energy for a month at room temperature and release the thermochemical energy “on demand” in a closed energy storage cycle. In addition to a full photophysical characterization, solar energy capture of the present system is experimentally demonstrated by flowing the MOST system through an outdoor solar collector (≈900 cm2 irradiated area). Moreover, catalyst systems were identified and integrated into an energy extraction device leading to high temperature gradients of up to 63 °C (83 °C measured temperature) with a short temperature ramp time of only a few minutes. The underlying step-by-step mechanism of the catalytic reaction is modelled in detail using quantum chemistry calculations, successfully rationalizing the experimental observations.

References

  1. United Nations, Adoption of the Paris Agreement, 2015.
  2. S. N. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 15729–15735 CrossRef PubMed.
  3. International Energy Agency, Technology Roadmap Solar Thermal Electricity, 2014.
  4. K. Moth-Poulsen, Molecular Devices for Solar Energy Conversion and Storage, 2018, ch. 9 Search PubMed.
  5. T. J. Kucharski, N. Fettalis, A. M. Kolpak, J. O. Zheng, D. G. Nocera and J. C. Grossman, Nat. Chem., 2014, 6, 441–447 CrossRef CAS PubMed.
  6. Z. Yoshida, J. Photochem., 1985, 29, 27–40 CrossRef CAS.
  7. A. Dreos, K. Börjesson, Z. Wang, A. Roffey, Z. Norwood, D. Kushnir and K. Moth-Poulsen, Energy Environ. Sci., 2017, 10, 728–734 RSC.
  8. M. Quant, A. Lennartson, A. Dreos, M. Kuisma, P. Erhart and K. Moth-Poulsen, Chem. – Eur. J., 2016, 22, 13265–13274 CrossRef CAS PubMed.
  9. A. Vlasceanu, S. L. Broman, A. S. Hansen, A. B. Skov, M. Cacciarini, A. Kadziola, H. G. Kjaergaard, K. V. Mikkelsen and M. B. Nielsen, Chem. – Eur. J., 2016, 22, 10796–10800 CrossRef CAS PubMed.
  10. R. R. Islangulov and F. N. Castellano, Angew. Chem., Int. Ed., 2006, 45, 5957–5959 CrossRef CAS PubMed.
  11. H. Taoda, K. Hayakawa, K. Kawase and H. Yamakita, J. Chem. Inf. Comput. Sci., 1987, 20, 265–270 CAS.
  12. K. Masutani, M. Morikawa and N. A. Kimizuka, Chem. Commun., 2014, 50, 15803–15806 RSC.
  13. K. Edel, X. Yang, J. S. A. Ishibashi, A. N. Lamm, C. Maichle-Mössmer, Z. X. Giustra, S. Liu and H. F. Bettinger, Angew. Chem., Int. Ed., 2018, 57, 5296–5300 CrossRef CAS PubMed.
  14. K. Moth-Poulsen, D. oso, K. Börjesson, N. Vinokurov, S. K. Meier, A. Majumdar, K. P. C. Vollhardtc and R. A. Segalman, Energy Environ. Sci., 2012, 5, 8534–8537 RSC.
  15. A. Lennartson, A. Roffey and K. Moth-Poulsen, Tetrahedron Lett., 2015, 56, 1457–1465 CrossRef CAS.
  16. O. Brummel, D. Besold, T. Döpper, Y. Wu, S. Bochmann, F. Lazzari, F. Waidhas, U. Bauer, P. Bachmann, C. Papp, H. Steinrück, A. Görling, J. Libuda and J. Bachmann, ChemSusChem, 2016, 9, 1424–1432 CrossRef CAS PubMed.
  17. S. Miki, Y. Asako, M. Morimoto, T. Ohno, Z. Yoshida, T. Maruyama, M. Fukuoka and T. Takada, Bull. Chem. Soc. Jpn., 1988, 61, 973–981 CrossRef CAS.
  18. D. J. Fife, K. W. Morse and W. M. Moore, J. Am. Chem. Soc., 1983, 105, 7404–7407 CrossRef CAS.
  19. H. Ken-ichi, Y. Asami and Y. Osamu, Tetrahedron Lett., 1988, 29, 4109–4112 CrossRef.
  20. S. Miki, T. Maruyama, T. Ohno, T. Tohma, S. Toyama and Z. Yoshida, Chem. Lett., 1988, 861–864 CrossRef CAS.
  21. V. A. Bren’, A. D. Dubonosov, V. I. Minkin and V. A. Chernoivanov, Russ. Chem. Rev., 1991, 60, 451–469 CrossRef.
  22. E. J. Wucherer and A. Wilson, U.S. Air Force Research Laboratory, Edwards Air Force Base, California, 1998.
  23. V. Gray, A. Lennartson, P. Ratanalert, K. Börjesson and K. Moth-Poulsen, Chem. Commun., 2014, 50, 5330–5332 RSC.
  24. F. Ghani, J. Kristen and H. Riegler, J. Chem. Eng. Data, 2012, 57, 439–449 CrossRef CAS.
  25. A. L. Tchougreeff, A. M. Tokmachev and R. R. Dronskowski, Int. J. Quantum Chem., 2013, 113, 1833–1846 CrossRef CAS.
  26. I. Antol, J. Comput. Chem., 2013, 34, 1439–1445 CrossRef CAS PubMed.
  27. K. Jorner, A. Dreos, R. Emanuelsson, O. L. Bakouri, I. F. Galván, K. Börjesson, F. Feixas, R. Lindh, B. Zietz, K. Moth-Poulsen and H. Ottosson, J. Mater. Chem. A, 2017, 5, 12369–12378 RSC.
  28. M. Kuisma, A. Lundin, K. Moth-Poulsen, P. Hyldgård and P. Erhart, ChemSusChem, 2016, 14, 1786–1794 CrossRef PubMed.
  29. M. J. Kuisma, A. M. Lundin, K. Moth-Poulsen, P. Hyldgaard and P. Erhart, J. Phys. Chem. C, 2016, 120, 3635–3645 CrossRef CAS PubMed.
Pledge Your Vote Now
Change language