Cracking the code of ice batteries: A high-tech spin on an old cooling method
Freezing liquids at night and then using it to cool homes and buildings during the day could reduce the carbon burden of air-conditioning
September 4, 2025
Before refrigerators were invented, people used ice boxes to keep food cold. A large block of ice in a top compartment of the box—typically made of wood and packed with insulating straw or sawdust—would slowly melt, sending cool air to the shelves below.
Just like ice has for decades kept food and drinks cold, it could also help to cool down buildings. And in a new paper published in The Journal of Physical Chemistry C, researchers advance the concept of such “ice batteries.” Their research could help to improve the materials used in such systems, making them more efficient and long-lasting.
Ice batteries use energy to freeze water or other liquid at times when electricity demand is low, or when there is excess electricity being produced. The ice is then melted to bring down building temperatures during peak hours. This takes some of the burden off energy-intensive air conditioning during the day, lowering energy use and costs.
“The ice battery technology has been around for a while,” Patrick Shamberger, a professor of materials science and engineering at Texas A&M University, said in a press release. “But there are problems on the material side that I’m interested in: what’s the right material at the right temperature? Can we make it reversible? Can we make it last for 30 years?”
Personal cooling device overcomes AC’s flaws
Ice battery systems typically convert liquids into ice with the help of chemicals called salt hydrates: salts that naturally contain water molecules in their crystal structures.
In an ice battery, salt hydrates interact with small solid particles called nucleation particles to freeze liquids. The type of salt hydrates, nucleation particles, and the temperatures at which they interact all affect the efficiency and stability of ice battery systems.
Shamberger and colleagues are developing and testing new salt hydrates that work best at temperatures suitable for real-world cooling systems. One issue with salt hydrates is that the material separates into solid and liquid phases that have different densities and compositions. This phase separation degrades the system after several freeze-thaw cycles.
In the new study, the researchers set out to find salt hydrate materials that avoid this separation. They used the salt hydrate calcium chloride hexahydrate, which is a promising compound for near room temperature ice battery systems. By analyzing the thermodynamics of phase changes, they found that nucleation particles with the element barium were better at triggering the freezing in the system.
Source: Denali Ibbotson et al, Mutability of Nucleation Particles in Reactive Salt Hydrate Phase Change Materials, The Journal of Physical Chemistry C, 2024.
Abstract

Nucleation particles, solid phases dispersed throughout a medium to decrease the energy barrier for solidification or other reversible phase transitions, are generally selected on the basis of structural or interfacial energy considerations between the host phase and the solid phase that is crystallizing. However, the existence of chemical reactions between the nucleation particles and the host phase can obscure these underlying relationships, thereby complicating the process of selection of active nucleation particle phases. Here, we reveal the origin of nucleation activity of barium-based nucleation particles in the salt hydrate calcium chloride hexahydrate (CCH), a candidate for near room temperature thermal energy storage. We demonstrate that these compounds undergo a series of cation exchange and secondary precipitation reactions, resulting in an assemblage of solid precipitates with some degree of limited solid solution, which collectively dramatically reduce undercooling in CCH, but which obscure the identification of a single crystalline phase primarily responsible for the nucleation of crystalline CCH from the liquid. Importantly, this result illustrates a pathway to harness in situ chemical reactions to generate stable active nucleation particles in reactive phase change materials, which may not be readily synthesized by alternative methods, or which may not be active or remain stable when added in isolation.
References
- Abhat A. Low Temperature Latent Heat Thermal Energy Storage: Heat storage materials. Sol. Energy 1983, 30, 313–332. 10.1016/0038-092X(83)90186-X.[DOI] [Google Scholar]
- Lane G. A.Solar Heat Storage: Latent Heat Materials Vol. II: Technology; CRC Press, 1986. [Google Scholar]
- Ahmed S.; Ibbotson D.; Somodi C.; Shamberger P. J. Zinc Nitrate Hexahydrate Pseudobinary Eutectics for Near-Room Temperature Thermal Energy Storage. ACS Appl. Eng. Mater. 2024, 2 (3), 530–541. 10.1021/acsaenm.3c00444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pilar R.; Svoboda L.; Honcova P.; Oravova L. Study of magnesium chloride hexahydrate as heat storage material. Thermochim. Acta 2012, 546, 81–86. 10.1016/j.tca.2012.07.021. [DOI] [Google Scholar]
- Lane G. A. Phase change materials for energy storage nucleation to prevent supercooling. Sol. Energy Mater. Sol. Cells 1992, 27, 135–160. 10.1016/0927-0248(92)90116-7. [DOI] [Google Scholar]
- Feilchenfeld H.; Sarig S. Calcium chloride hexahydrate: a phase-changing material for energy storage. Ind. Eng. Chem. Prod. Res. Dev. 1985, 24 (1), 130–133. 10.1021/i300017a024. [DOI] [Google Scholar]
- Shamberger P. J.; Reid T. Thermophysical Properties of Lithium Nitrate Trihydrate from (253 to 353) K. J. Chem. Eng. Data 2012, 57 (5), 1404–1411. 10.1021/je3000469. [DOI] [Google Scholar]
- Telkes M. Nucleation of Supersaturated Inorganic Salt Solutions. Ind. Eng. Chem. 1952, 44 (6), 1308–1310. 10.1021/ie50510a036. [DOI] [Google Scholar]
- Shamberger P. J.; O’Malley M. J. Heterogeneous nucleation of thermal storage material LiNO3·3H2O from stable lattice-matched nucleation catalysts. Acta Mater. 2015, 84, 265–274. 10.1016/j.actamat.2014.10.051. [DOI] [Google Scholar]
- Tan X.; Nian H.; Li J.; Zhou Y.; Zhu F.; Li X. Modified Calcium Chloride Hexahydrate Lotus Root Starch/Expanded Graphite Shape-Stabilized Composite Phase Change Materials: Enhanced Heat Storage, Improved Heat Transfer, and Suppressed Supercooling Behavior. Energy Fuels 2021, 35 (18), 15126–15132. 10.1021/acs.energyfuels.1c01845. [DOI] [Google Scholar]
- Akamo D. O.; Kumar N.; Li Y.; Pekol C.; Li K.; Goswami M.; Hirschey J.; LaClair T. J.; Keffer D. J.; Rios O.; Gluesenkamp K. R. Stabilization of low-cost phase change materials for thermal energy storage applications. iScience 2023, 26 (7), 107175 10.1016/j.isci.2023.107175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandstetter A. On the stability of calcium chloride hexahydrate in thermal storage systems. Sol. Energy 1988, 41 (2), 183–191. 10.1016/0038-092X(88)90135-1. [DOI] [Google Scholar]
- Zhang X.; Inada T.; Tezuka A. Ultrasonic-induced nucleation of ice in water containing air bubbles. Ultrason. Sonochem. 2003, 10, 71–76. 10.1016/S1350-4177(02)00151-7. [DOI] [PubMed] [Google Scholar]
- Yu X.; Morikawa D.; Tokunaga Y.; Kubota M.; Kurumaji T.; Oike H.; Nakamura M.; Kagawa F.; Taguchi Y.; Arima T. H.; et al. Current-Induced Nucleation and Annihilation of Magnetic Skyrmions at Room Temperature in a Chiral Magnet. Adv. Mater. 2017, 29 (21), 1606178 10.1002/adma.201606178. [DOI] [PubMed] [Google Scholar]
- Low W.Applied Solid State Physics; Springer, 2012. [Google Scholar]
- Turnbull D.; Vonnegut B. Nucleation Catalysis. Ind. Eng. Chem. 1952, 44 (6), 1292–1298. 10.1021/ie50510a031. [DOI] [Google Scholar]
- Isostructural crystals. https://dictionary.iucr.org/Isostructural_crystals. (accessed December 1, 2023).
- Vonnegut B.; Chessin H. Ice Nucleation by Soprecipitated Silver Iodide and Silver Bromide. Science 1971, 174, 945–946. 10.1126/science.174.4012.945.[DOI] [PubMed] [Google Scholar]
- Chakravarty S.; Sharar D. J.; Shamberger P. J. Heterogeneous nucleation of gallium with lattice-matched cubic carbide and nitride phases. J. Appl. Phys. 2021, 130 (12), 125107 10.1063/5.0060207. [DOI] [Google Scholar]
- Carlsson B.; Stymne H.; Wettermark G. An Incongruent Heat-of-Fusion System – CaCl2·6H2O – Made Congruent through Modification of the Chemical Composition of the System. Sol. Energy 1979, 23, 343–350. 10.1016/0038-092X(79)90129-4. [DOI] [Google Scholar]
- Guo Y.; Gao D.; Yu X.; Ma C.; Chen S.; Deng T. Thermal energy storage using calcium chloride hexahydrate. Therm. Sci. 2018, 22 (6), 3035–3041. 10.2298/tsci170119135g. [DOI] [Google Scholar]
- Assarsson G. O.; Balder A. Equilibria between 18 and 114 in the aqueous ternary system containing Ca2+, Sr2+, and Cl–. J. Phys. Chem. A 1953, 57 (7), 717–722. 10.1021/j150508a028. [DOI] [Google Scholar]
- Cao S.; Luo X.; Han X.; Lu X.; Zou C. Development of a New Modified CaCl2·6H2O Composite Phase Change Material. Energies 2022, 15 (3), 824 10.3390/en15030824. [DOI] [Google Scholar]
- Berggren G.; Brown A.; Søtofte I.; et al. Thermal and X-Ray Diffraction Studies of the System Sr(OH)2–H2O. Acta Chem. Scand. 1971, 25, 1377–1386. 10.3891/acta.chem.scand.25-1377. [DOI] [Google Scholar]
- Wang J.; Toby B. H.; Lee P. L.; Ribaud L.; Antao S. M.; Kurtz C.; Ramanathan M.; Von Dreele R. B.; Beno M. A. A dedicated powder diffraction beamline at the Advanced Photon Source: Commissioning and early operational results. Rev. Sci. Instrum. 2008, 79, 085105 10.1063/1.2969260. [DOI] [PubMed] [Google Scholar]
- Lee P. L.; Shu D.; Ramanathan M.; Preissner C.; Wang J.; Beno M. A.; Von Dreele R. B.; Ribaud L.; Kurtz C.; Antao S. M.; et al. A twelve-analyzer detector system for high-resolution powder diffraction. J. Synchrotron Radiat 2008, 15 (5), 427–432. 10.1107/S0909049508018438. [DOI] [PubMed] [Google Scholar]
- Toby B. H.; Huang Y.; Dohan D.; Carroll D.; Jiao X.; Ribaud L.; Doebbler J. A.; Suchomel M. R.; Wang J.; Preissner C.; et al. Management of metadata and automation for mail-in measurements with the APS 11-BM high-throughput, high-resolution synchrotron powder diffractometer. J. Appl. Crystallogr. 2009, 42 (6), 990–993. 10.1107/S0021889809035717. [DOI] [Google Scholar]
- Dalesio L. R.; Hill J. O.; Kraimer M.; Lewis S.; Murray D.; Hunt S.; Watson W.; Clausen M.; Dalesio J. The experimental physics and industrial control system architecture: past, present, and future. Nucl. Instrum. Methods Phys. Res., Sect. A 1994, 352, 179–184. 10.1016/0168-9002(94)91493-1. [DOI] [Google Scholar]
- Toby B. H.; Von Dreele R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46 (2), 544–549. 10.1107/S0021889813003531. [DOI] [Google Scholar]
- Lane G. A. Adding strontium chloride or calcium hydroxide to calcium chloride hexahydrate heat storage material. Sol. Energy 1981, 27, 73–75. 10.1016/0038-092X(81)90023-2. [DOI] [Google Scholar]
- Agron P. A.; Busing W. R. Calcium and strontium dichloride hexahydrates by neutron diffraction. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1986, 42 (2), 141–143. 10.1107/S0108270186097007. [DOI] [Google Scholar]
- Graf D. L. Crystallographic Tables for the Rhombohedral Carbonates. Am. Mineral. 1961, 46, 1283–1316. [Google Scholar]
- Petch H. E. The Hydrogen Positions in Portlandite, Ca(OH)2, as Indicated by the Electron Distribution. Acta Crystallogr. 1961, 14, 950–957. 10.1107/S0365110X61002771. [DOI] [Google Scholar]
- Gerlach V. W. Die Gitterstruktur der Erdalkalioxyde. Z. Phys. 1922, 9, 184–192. 10.1007/BF01326966. [DOI] [Google Scholar]
- Brackett E. B.; Brackett T. E.; Sass R. L. The Crystal Structures of Barium Chloride, Barium Bromide, and Barium Iodide. J. Phys. Chem. A 1963, 67 (10), 2132–2135. 10.1021/j100804a038. [DOI] [Google Scholar]
- De Villiers J. P. R. Crystal Structures of Aragonite, Strontianite, and Witherite. Am. Mineral. 1971, 56, 758–767. [Google Scholar]
- Friedrich A.; Kunz M.; Miletich R.; Pattison P. High-pressure behavior of Ba(OH)2: Phase transitions and bulk modulus. Phys. Rev. B 2002, 66 (21), 214103 10.1103/PhysRevB.66.214103. [DOI] [Google Scholar]
- Padmanabhan V. M.; Busing W. R.; Levy H. A. Barium Chloride Dihydrate by Neutron Diffraction. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1978, 34, 2290–2292. 10.1107/S056774087800792X. [DOI] [Google Scholar]
- Fromm K. M. Structural Evolution from the Solid State to the Molecule for BaI2: Synthesis and Crystal Structures of [BaI2(μ2-OH2)2]3/∞, [BaI2(μ2-OH2)(OC3H6)]2/∞, [BaI2(thf)3]1/∞, and [BaI2(thf)5]·THF. Angew. Chem., Int. Ed. Engl. 1997, 36 (24), 2799–2801. 10.1002/anie.199727991. [DOI] [Google Scholar]
- Manohar H.; Ramaseshan S. The crystal structure of barium hydroxide octahydrate Ba(OH)2·8H2O. Z. Kristallogr. 1964, 119, 357–374. 10.1524/zkri.1964.119.5-6.357. [DOI] [Google Scholar]
- Fenstad J.; Fray D. J. The binary diagram water+barium chloride. C. R. Chim. 2006, 9 (10), 1235–1242. 10.1016/j.crci.2006.02.004. [DOI] [Google Scholar]
- Chuliá-Jordán R.; Santamaria-Perez D.; Gonzalez-Platas J.; Otero-de-la-Roza A.; Ruiz-Fuertes J.; Popescu C. Phase stability and dense polymorph of the BaCa(CO3)2 barytocalcite carbonate. Sci. Rep. 2022, 12 (1), 7413 10.1038/s41598-022-11301-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Astilleros-Garcia J. M.Estudio Integrado de la Cristalización de Soluciones Sólidas no Ideales (Ca,M)CO3 (M = Ba, Sr, Mn); University Complutense of Madrid, 2001. [Google Scholar]
- Haas G.; Menck A.; Brune H.; Barth J. V.; Venables J. A.; Kern K. Nucleation and growth of supported clusters at defect sites: Pd/MgO(001). Phys. Rev. B 2000, 61 (16), 11105 10.1103/PhysRevB.61.11105. [DOI] [Google Scholar]
- Morin S. A.; Bierman M. J.; Tong J.; Jin S. Mechanism and Kinetics of Spontaneous Nanotube Growth Driven by Screw Dislocations. Science 2010, 328, 476–480. 10.1126/science.1182977. [DOI] [PubMed] [Google Scholar]