Can “immigrant” corals save Florida’s dying reefs?
Scientists are testing hybrid elkhorn corals bred from Florida and Honduras parents in the wild for the first time. The experiment could reshape both reef survival—and conservation politics.

By Warren Cornwall in Anthropocene
August 20, 2025
Coral isn’t exactly a migratory species. Many have exoskeletons that seem more like sculptures than living organisms. But right now, Florida scientists are watching closely to see if an unusual experiment in coral migration pays off.
As the state’s coastal waters warm in the August heat, it will be the first hot-water test in the wild for fledgling elkhorn corals that trace their lineage to parents from Honduras and Florida, two parts of the Caribbean so far apart that the corals would normally never meet.
“It will be very interesting to see how they do,” says Andrew Baker, a coral ecologist at the University of Miami.
This isn’t just a biological experiment. It’s also a political one. This is the first time that Florida regulators have permitted the release of coral with genes imported from another part of the region. And if scientists like Baker get their way, it won’t be the last.
In a late July piece in Science magazine, Baker and other coral scientists laid out the need for such measures, and the kinds of political and institutional changes that might help make it easier to repeat.
Dubbed “assisted gene flow” (AGF), it’s the latest example of the kinds of gymnastics being done by conservationists and scientists to help populations try to outrun changing environmental conditions by giving a boost to migrations. In some cases, this means literal changes in migration, like researchers in Europe who carried birds further north. In other cases, like the Florida coral, it means moving genetic material around.
If there were ever a population in need of some outside help, it’s Florida’s elkhorn coral. Decades of pollution, boat damage, diseases and warming waters have wiped out most of the natural reefs created by spiky elkhorn and their more sprawling relatives, staghorn coral. Those two species have declined by 97% in Florida since the early 1980s.
Today there are just 158 genetically unique individual Florida elkhorns in existence. And just 23 of them are found in the wild.
The danger of such a small genetic pool was highlighted in 2023, when a record-setting underwater heatwave in Florida devastated many of the remaining patches of elkhorn coral – both naturally occurring ones and ones raised in tanks and then planted in the water to rebuild reefs.
Algae “perfume” fused with high-tech materials holds promise for growing coral
Scientists drew one big conclusion from the wipeout: They needed more genetic diversity to give these corals a chance to evolve to cope with a warmer world. In part, that means a growing emphasis on sexual reproduction between Florida coral in aquaculture facilities to create more genetically unique offspring. In the past, coral planting projects relied chiefly on clones of existing individuals, created by breaking off a bit of a coral exoskeleton – really a colony of genetically identical coral polyps.
But even more genetic diversity could come from other elkhorn populations elsewhere in the Caribbean, such as the ones from Honduras. There, elkhorn coral are thriving in water that is warmer and more polluted, says Baker.
In a lab, the scientists created what Baker calls a “Flonduran” coral, using genetic material collected from spawning Florida and Honduras corals. The offspring eventually took root on small hockey puck-like discs, ready to be placed on the ocean floor.
“The hope is that some of these offspring that are now a year old are actually going to be better able to deal with Florida’s warm summers,” says Baker.
But before researchers could put the offspring in the water, they needed to navigate a regulatory thicket built to control the movement of species across political boundaries. That included permission from the Florida Fish and Wildlife Conservation Commission. Before that it had taken a year to obtain permits to bring chunks of the Honduran coral to their Florida lab.
In a warming world where conservation scientists see an increasing need to intervene in natural processes, today’s political rules can be hindrance, Baker and colleagues warned in their Science paper. The international agreement governing the cross-border transport of species, the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), is one hurdle scientists might have to clear. In the U.S. there’s the Endangered Species Act. Then there’s the Nagoya Protocols, a less-widely used agreement with recommendations for how genetic material is shared across borders.
When it comes to coral, Baker and co. have some advice on how to streamline these systems, while avoid the kind of abuses that can abet a black market in endangered species, the introduction of unwanted pests, or the hijacking of one country’s genetic legacies by another.
That could include treating coral like live plants under CITES regulations, allowing corals to be exchanged among aquaculture nurseries in different countries. Organizations could also create a kind of regional genetic bank, where coral from different countries could be kept alive in tanks, or their sperm could be frozen for future use.
There’s no time to waste, warn the scientists. Coral aren’t adapting fast enough on their own. And “windows of opportunity for effective large-scale implementation of AGF are closing rapidly,” they write in the new paper. “Waiting until genetic rescue is ‘needed’ to save coral species on the brink of extinction may well be too late.”
It remains to be seen if it’s too late for Florida’s elkhorn coral.
Baker, et. al. “Proactive assisted gene flow for Caribbean corals in an era of rapid coral reef decline.” Science. July 24, 2025.
References
- Aitken and Whitlock, 2013S.N. Aitken, M.C. WhitlockAssisted gene flow to facilitate local adaptation to climate changeAnnu. Rev. Ecol. Evol. Syst., 44 (2013), pp. 367-388View at publisherCrossrefView in ScopusGoogle Scholar
- Álvarez-Noriega et al., 2018M. Álvarez-Noriega, A.H. Baird, T.C.L. Bridge, M. Dornelas, L.Fontoura, O. Pizarro, K. Precoda, D. Torres-Pulliza, R.M. Woods, K. Zawada, J.S.MadinContrasting patterns of changes in abundance following a bleaching event between juvenile and adult scleractinian coralsCoral Reefs, 37 (2) (2018), pp. 527-532, 10.1007/s00338-018-1677-yView at publisherView in ScopusGoogle Scholar
- Arias, 2021P. AriasTechnical summaryClimate Change 2021: The Physical Science Basis, Cambridge University Press, Cambridge (2021)Google Scholar
- Babcock et al., 2016R.C. Babcock, J.M. Dambacher, E.B. Morello, É.E. Plagányi, K.R. Hayes, H.P.A. Sweatman, M.S. PratchettAssessing different causes of crown-of-thorns starfish outbreaks and appropriate responses for management on the Great Barrier ReefPLoS One, 11 (12) (2016), Article e0169048, 10.1371/journal.pone.0169048View in ScopusGoogle Scholar
- Baird and Marshall, 2002A.H. Baird, P.A. MarshallMortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier ReefMar. Ecol. Prog. Ser., 237 (2002), pp. 133-141https://www.int-res.com/abstracts/meps/v237/p133-141/CrossrefView in ScopusGoogle Scholar
- Baird et al., 2021A.H. Baird, J.R. Guest, A.J. Edwards, A.G. Bauman, J. Bouwmeester, H.Mera, D. Abrego, M. Alvarez-Noriega, R.C. Babcock, M.B. Barbosa, V. Bonito, J. Burt, P.C. Cabaitan, C.-F. Chang, S. Chavanich, C.A. Chen, C.-J. Chen, W.-J. Chen, F.-C.Chung, …, S. YusufAn Indo-Pacific coral spawning databaseScientific Data, 8 (1) (2021), p. 35, 10.1038/s41597-020-00793-8View in ScopusGoogle Scholar
- Bairos-Novak et al., 2021K.R. Bairos-Novak, M.O. Hoogenboom, M.J.H. van Oppen, S.R.ConnollyCoral adaptation to climate change: meta-analysis reveals high heritability across multiple traitsGlob. Chang. Biol., 27 (22) (2021), pp. 5694-5710, 10.1111/gcb.15829View in ScopusGoogle Scholar
- Baums et al., 2019I.B. Baums, A.C. Baker, S.W. Davies, A.G. Grottoli, C.D. Kenkel, S.A.Kitchen, I.B. Kuffner, T.C. LaJeunesse, M.V. Matz, M.W. MillerConsiderations for maximizing the adaptive potential of restored coral populations in the western AtlanticEcol. Appl., 29 (8) (2019), Article e01978View in ScopusGoogle Scholar
- Berg et al., 2019S. Berg, D. Kutra, T. Kroeger, C.N. Straehle, B.X. Kausler, C. Haubold, M.Schiegg, J. Ales, T. Beier, M. Rudy, K. Eren, J.I. Cervantes, B. Xu, F. Beuttenmueller, A.Wolny, C. Zhang, U. Koethe, F.A. Hamprecht, A. Kreshukilastik: interactive machine learning for (bio)image analysisNat. Methods, 16 (12) (2019), pp. 1226-1232, 10.1038/s41592-019-0582-9View in ScopusGoogle Scholar
- Bourne et al., 2016D.G. Bourne, K.M. Morrow, N.S. WebsterInsights into the coral microbiome: underpinning the health and resilience of reef ecosystemsAnn. Rev. Microbiol., 70 (2016), pp. 317-340, 10.1146/annurev-micro-102215-095440View in ScopusGoogle Scholar
- Bruno et al., 2007J.F. Bruno, E.R. Selig, K.S. Casey, C.A. Page, B.L. Willis, C.D. Harvell, H.Sweatman, A.M. MelendyThermal stress and coral cover as drivers of coral disease outbreaksPLoS Biol., 5 (6) (2007), Article e124, 10.1371/journal.pbio.0050124Google Scholar
- Buckley and Huey, 2016L.B. Buckley, R.B. HueyTemperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilitiesGlob. Chang. Biol., 22 (12) (2016), pp. 3829-3842CrossrefView in ScopusGoogle Scholar
- Bürkner, 2017aBürkner, P.-C. (2017a). Advanced Bayesian multilevel modeling with the R package brms. arXiv preprint arXiv:1705.11123.Google Scholar
- Bürkner, 2017bP.-C. Bürknerbrms: an R package for Bayesian multilevel models using StanJ. Stat. Softw., 80 (2017), pp. 1-28Google Scholar
- Caballes et al., 2016C.F. Caballes, M.S. Pratchett, A.M. Kerr, J.A. Rivera-PosadaThe role of maternal nutrition on oocyte size and quality, with respect to early larval development in the coral-eating starfish, Acanthaster planciPLoS One, 11 (6) (2016), Article e0158007, 10.1371/journal.pone.0158007View in ScopusGoogle Scholar
- Cornwell et al., 2021B. Cornwell, K. Armstrong, N.S. Walker, M. Lippert, V. Nestor, Y.Golbuu, S.R. PalumbiWidespread variation in heat tolerance and symbiont load are associated with growth tradeoffs in the coral Acropora hyacinthus in PalauElife, 10 (2021), Article e64790View in ScopusGoogle Scholar
- Da-Anoy et al., 2024J. Da-Anoy, N. Posadas, C. ConacoInterspecies differences in the transcriptome response of corals to acute heat stressPeerJ, 12 (2024), Article e18627, 10.7717/peerj.18627View in ScopusGoogle Scholar
- Darling et al., 2012E.S. Darling, L. Alvarez-Filip, T.A. Oliver, T.R. McClanahan, I.M. CôtéEvaluating life-history strategies of reef corals from species traitsEcol. Lett., 15 (12) (2012), pp. 1378-1386, 10.1111/j.1461-0248.2012.01861.xView in ScopusGoogle Scholar
- De’Ath et al., 2012G. De’Ath, K.E. Fabricius, H. Sweatman, M. PuotinenThe 27–year decline of coral cover on the Great Barrier Reef and its causesProc. Natl. Acad. Sci., 109 (44) (2012), pp. 17995-17999CrossrefView in ScopusGoogle Scholar
- Dixon et al., 2015G.B. Dixon, S.W. Davies, G.V. Aglyamova, E. Meyer, L.K. Bay, M.V. MatzGenomic determinants of coral heat tolerance across latitudesScience, 348 (6242) (2015), pp. 1460-1462, 10.1126/science.1261224View in ScopusGoogle Scholar
- Doney et al., 2020S.C. Doney, D.S. Busch, S.R. Cooley, K.J. KroekerThe impacts of ocean acidification on marine ecosystems and reliant human communitiesAnnu. Rev. Environ. Resour., 45 (1) (2020), pp. 83-112, 10.1146/annurev-environ-012320-083019View in ScopusGoogle Scholar
- Donner, 2011S.D. DonnerAn evaluation of the effect of recent temperature variability on the prediction of coral bleaching eventsEcol. Appl., 21 (5) (2011), pp. 1718-1730CrossrefView in ScopusGoogle Scholar
- Donner et al., 2017S.D. Donner, G.J.M. Rickbeil, S.F. HeronA new, high-resolution global mass coral bleaching databasePLoS One, 12 (4) (2017), Article e0175490, 10.1371/journal.pone.0175490View in ScopusGoogle Scholar
- Douglas, 2003A.E. DouglasCoral bleaching––how and why?Mar. Pollut. Bull., 46 (4) (2003), pp. 385-392, 10.1016/S0025-326X(03)00037-7View PDFView articleView in ScopusGoogle Scholar
- Drury et al., 2022aC. Drury, N.K. Bean, C.I. Harris, J.R. Hancock, J. Huckeba, C.M. H, T.N.F.Roach, R.A. Quinn, R.D. GatesIntrapopulation adaptive variance supports thermal tolerance in a reef-building coralCommunications Biology, 5 (1) (2022), p. 486, 10.1038/s42003-022-03428-3View in ScopusGoogle Scholar
- Drury et al., 2022bC. Drury, C. Caruso, K.M. QuigleySelective breeding to enhance the adaptive potential of coralsM.J.H. van Oppen, M. Aranda Lastra (Eds.), Coral Reef Conservation and Restoration in the Omics Age, Springer International Publishing (2022), pp. 71-84, 10.1007/978-3-031-07055-6_5View in ScopusGoogle Scholar
- Drury et al., 2022cC. Drury, J. Dilworth, E. Majerová, C. Caruso, J.B. GreerExpression plasticity regulates intraspecific variation in the acclimatization potential of a reef-building coralNat. Commun., 13 (1) (2022), pp. 1-9CrossrefGoogle Scholar
- Duenk et al., 2020P. Duenk, P. Bijma, M.P. Calus, Y.C. Wientjes, J.H. van der WerfThe impact of non-additive effects on the genetic correlation between populationsG3: Genes, Genomes, Genetics, 10 (2) (2020), pp. 783-795CrossrefView in ScopusGoogle Scholar
- Ferrara et al., 2024E.F. Ferrara, A. Roik, F. Wöhrmann-Zipf, M. ZieglerThermal Preconditioning Modulates Coral Physiology and Heat Tolerance: A Multi-species PerspectivebioRxiv, 2024.2007.2018.604102(2024), 10.1101/2024.07.18.604102Google Scholar
- Finelli et al., 2021R. Finelli, K. Leisegang, S. Tumallapalli, R. Henkel, A. AgarwalThe validity and reliability of computer-aided semen analyzers in performing semen analysis: a systematic reviewTranslational Andrology and Urology, 10 (7) (2021), p. 3069CrossrefView in ScopusGoogle Scholar
- Gilbert and Miles, 2019A.L. Gilbert, D.B. MilesAntagonistic responses of exposure to sublethal temperatures: adaptive phenotypic plasticity coincides with a reduction in organismal performanceAm. Nat., 194 (3) (2019), pp. 344-355, 10.1086/704208View in ScopusGoogle Scholar
- Grummer et al., 2022J.A. Grummer, T.R. Booker, R. Matthey-Doret, P. Nietlisbach, A.T.Thomaz, M.C. WhitlockThe immediate costs and long-term benefits of assisted gene flow in large populationsConserv. Biol., 36 (4) (2022), Article e13911, 10.1111/cobi.13911View in ScopusGoogle Scholar
- Guerrero and Bay, 2024L. Guerrero, R. BayPatterns of methylation and transcriptional plasticity during thermal acclimation in a reef-building coralEvol. Appl., 17 (7) (2024), Article e13757, 10.1111/eva.13757View in ScopusGoogle Scholar
- Guo et al., 2015J. Guo, J. Gabry, B. Goodrich, S. WeberPackage ‘rstan’(2015)Google Scholar
- Hagedorn et al., 2018M. Hagedorn, C.A. Page, K. O’Neil, D.M. Flores, L. Tichy, V.F.Chamberland, C. Lager, N. Zuchowicz, K. Lohr, H. Blackburn, T. Vardi, J. Moore, T.Moore, M.J.A. Vermeij, K.L. MarhaverSuccessful Demonstration of Assisted Gene Flow in the Threatened Coral <em>Acropora Palmata</em> Across Genetically-Isolated Caribbean Populations using Cryopreserved SpermbioRxiv, 492447(2018), 10.1101/492447Google Scholar
- Hamilton and Miller, 2016J.A. Hamilton, J.M. MillerAdaptive introgression as a resource for management and genetic conservation in a changing climateConserv. Biol., 30 (1) (2016), pp. 33-41CrossrefView in ScopusGoogle Scholar
- Harii et al., 2007S. Harii, K. Nadaoka, M. Yamamoto, K. IwaoTemporal changes in settlement, lipid content and lipid composition of larvae of the spawning hermatypic coral Acropora tenuisMar. Ecol. Prog. Ser., 346 (2007), pp. 89-96https://www.int-res.com/abstracts/meps/v346/p89-96/CrossrefView in ScopusGoogle Scholar
- Hartig, 2017F. HartigPackage ‘DHARMa’R Development Core Team, Vienna, Austria (2017)Google Scholar
- Hazraty-Kari et al., 2022aS. Hazraty-Kari, M. Masaya, M. Kawachi, S. HariiThe early acquisition of symbiotic algae benefits larval survival and juvenile growth in the coral Acropora tenuisJournal of Experimental Zoology Part A: Ecological and Integrative Physiology, 337(5) (2022), pp. 559-565, 10.1002/jez.2589View in ScopusGoogle Scholar
- Hazraty-Kari et al., 2022bS. Hazraty-Kari, P. Tavakoli-Kolour, S. Kitanobo, T. Nakamura, M.MoritaAdaptations by the coral Acropora tenuis confer resilience to future thermal stressCommunications Biology, 5 (1) (2022), p. 1371, 10.1038/s42003-022-04309-5View in ScopusGoogle Scholar
- Healy et al., 2018T.M. Healy, R.S. Brennan, A. Whitehead, P.M. SchulteTolerance traits related to climate change resilience are independent and polygenicGlob. Chang. Biol., 24 (11) (2018), pp. 5348-5360, 10.1111/gcb.14386View in ScopusGoogle Scholar
- Heyward and Babcock, 1986A.J. Heyward, R.C. BabcockSelf- and cross-fertilization in scleractinian coralsMar. Biol., 90 (2) (1986), pp. 191-195, 10.1007/BF00569127View in ScopusGoogle Scholar
- Hoadley et al., 2019K.D. Hoadley, A.M. Lewis, D.C. Wham, D.T. Pettay, C. Grasso, R. Smith, D.W. Kemp, T.C. LaJeunesse, M.E. WarnerHost–symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stressSci. Rep., 9 (1) (2019), p. 9985, 10.1038/s41598-019-46412-4View in ScopusGoogle Scholar
- Hoffmann et al., 2021A.A. Hoffmann, A.R. Weeks, C.M. SgròOpportunities and challenges in assessing climate change vulnerability through genomicsCell, 184 (6) (2021), pp. 1420-1425, 10.1016/j.cell.2021.02.006View PDFView articleView in ScopusGoogle Scholar
- Howells et al., 2016E.J. Howells, D. Abrego, E. Meyer, N.L. Kirk, J.A. BurtHost adaptation and unexpected symbiont partners enable reef-building corals to tolerate extreme temperaturesGlob. Chang. Biol., 22 (8) (2016), pp. 2702-2714CrossrefView in ScopusGoogle Scholar
- Howells et al., 2021E.J. Howells, D. Abrego, Y.J. Liew, J.A. Burt, E. Meyer, M. ArandaEnhancing the heat tolerance of reef-building corals to future warmingSci. Adv., 7 (34) (2021), Article eabg6070, 10.1126/sciadv.abg6070View in ScopusGoogle Scholar
- Howells et al., 2022E.J. Howells, L.K. Bay, R.A. BayIdentifying, monitoring, and managing adaptive genetic variation in reef-building corals under rapid climate warmingM.J.H. van Oppen, M. Aranda Lastra (Eds.), Coral Reef Conservation and Restoration in the Omics Age, Springer International Publishing (2022), pp. 55-70, 10.1007/978-3-031-07055-6_4View in ScopusGoogle Scholar
- Hughes et al., 2018aT.P. Hughes, K.D. Anderson, S.R. Connolly, S.F. Heron, J.T. Kerry, J.M.Lough, A.H. Baird, J.K. Baum, M.L. Berumen, T.C. Bridge, D.C. Claar, C.M. Eakin, J.P.Gilmour, N.A.J. Graham, H. Harrison, J.-P.A. Hobbs, A.S. Hoey, M. Hoogenboom, R.J.Lowe, …, S.K. WilsonSpatial and temporal patterns of mass bleaching of corals in the AnthropoceneScience, 359 (6371) (2018), pp. 80-83, 10.1126/science.aan8048View in ScopusGoogle Scholar
- Hughes et al., 2018bT.P. Hughes, J.T. Kerry, A.H. Baird, S.R. Connolly, A. Dietzel, C.M. Eakin, S.F. Heron, A.S. Hoey, M.O. Hoogenboom, G. Liu, M.J. McWilliam, R.J. Pears, M.S.Pratchett, W.J. Skirving, J.S. Stella, G. TordaGlobal warming transforms coral reef assemblagesNature, 556 (7702) (2018), pp. 492-496, 10.1038/s41586-018-0041-2View in ScopusGoogle Scholar
- Humanes et al., 2024A. Humanes, L. Lachs, E. Beauchamp, L. Bukurou, D. Buzzoni, J.Bythell, J.R.K. Craggs, R. de la Torre Cerro, A.J. Edwards, Y. Golbuu, H.M. Martinez, P.Palmowski, E. van der Steeg, M. Sweet, A. Ward, A.J. Wilson, J.R. GuestSelective breeding enhances coral heat tolerance to marine heatwavesNat. Commun., 15 (1) (2024), p. 8703, 10.1038/s41467-024-52895-1View in ScopusGoogle Scholar
- Iwao et al., 2002K. Iwao, T. Fujisawa, M. HattaA cnidarian neuropeptide of the GLWamide family induces metamorphosis of reef-building corals in the genus AcroporaCoral Reefs, 21 (2) (2002), pp. 127-129CrossrefView in ScopusGoogle Scholar
- Kenkel et al., 2015C.D. Kenkel, A.T. Almanza, M.V. MatzFine-scale environmental specialization of reef-building corals might be limiting reef recovery in the Florida keysEcology, 96 (12) (2015), pp. 3197-3212, 10.1890/14-2297.1View in ScopusGoogle Scholar
- Kovach et al., 2016R.P. Kovach, G. Luikart, W.H. Lowe, M.C. Boyer, C.C. MuhlfeldRisk and efficacy of human-enabled interspecific hybridization for climate-change adaptation: response to Hamilton and Miller (2016)Conserv. Biol., 30 (2) (2016), pp. 428-430CrossrefView in ScopusGoogle Scholar
- Ladner and Palumbi, 2012J.T. Ladner, S.R. PalumbiExtensive sympatry, cryptic diversity and introgression throughout the geographic distribution of two coral species complexesMol. Ecol., 21 (9) (2012), pp. 2224-2238, 10.1111/j.1365-294X.2012.05528.xView in ScopusGoogle Scholar
- Lefcheck, 2016J.S. LefcheckpiecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematicsMethods Ecol. Evol., 7 (5) (2016), pp. 573-579View in ScopusGoogle Scholar
- Liew et al., 2020Y.J. Liew, E.J. Howells, X. Wang, C.T. Michell, J.A. Burt, Y. Idaghdour, M.ArandaIntergenerational epigenetic inheritance in reef-building coralsNat. Clim. Chang., 10 (3) (2020), pp. 254-259, 10.1038/s41558-019-0687-2View in ScopusGoogle Scholar
- Lin and Nozawa, 2023C.-H. Lin, Y. NozawaThe influence of seawater temperature on the timing of coral spawningCoral Reefs, 42 (2) (2023), pp. 417-426, 10.1007/s00338-023-02349-9View in ScopusGoogle Scholar
- Liu et al., 2014G. Liu, S.F. Heron, C.M. Eakin, F.E. Muller-Karger, M. Vega-Rodriguez, L.S.Guild, J.L. De La Cour, E.F. Geiger, W.J. Skirving, T.F. BurgessReef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA Coral Reef WatchRemote Sens., 6 (11) (2014), pp. 11579-11606CrossrefView in ScopusGoogle Scholar
- Macadam et al., 2021A. Macadam, C.J. Nowell, K. QuigleyMachine learning for the fast and accurate assessment of fitness in coral early life historyRemote Sens., 13 (16) (2021), p. 3173CrossrefView in ScopusGoogle Scholar
- Magel et al., 2019J.M.T. Magel, J.H.R. Burns, R.D. Gates, J.K. BaumEffects of bleaching-associated mass coral mortality on reef structural complexity across a gradient of local disturbanceSci. Rep., 9 (1) (2019), p. 2512, 10.1038/s41598-018-37713-1View in ScopusGoogle Scholar
- Matias et al., 2023A.M.A. Matias, I. Popovic, J.A. Thia, I.R. Cooke, G. Torda, V. Lukoschek, L.K. Bay, S.W. Kim, C. RiginosCryptic diversity and spatial genetic variation in the coral Acropora tenuis and its endosymbionts across the Great Barrier ReefEvol. Appl., 16 (2) (2023), pp. 293-310, 10.1111/eva.13435View in ScopusGoogle Scholar
- Matsuda et al., 2022S.B. Matsuda, L.J. Chakravarti, R. Cunning, A.S. Huffmyer, C.E. Nelson, R.D. Gates, M.J.H. van OppenTemperature-mediated acquisition of rare heterologous symbionts promotes survival of coral larvae under ocean warmingGlob. Chang. Biol., 28 (6) (2022), pp. 2006-2025, 10.1111/gcb.16057View in ScopusGoogle Scholar
- Matz et al., 2018M.V. Matz, E.A. Treml, G.V. Aglyamova, L.K. BayPotential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coralPLoS Genet., 14 (4) (2018), Article e1007220CrossrefView in ScopusGoogle Scholar
- McLeod et al., 2022I.M. McLeod, M.Y. Hein, R. Babcock, L. Bay, D.G. Bourne, N. Cook, C.Doropoulos, M. Gibbs, P. Harrison, S. Lockie, M.J.H. van Oppen, N. Mattocks, C.A.Page, C.J. Randall, A. Smith, H.A. Smith, D.J. Suggett, B. Taylor, K.J. Vella, …, L.Boström-EinarssonCoral restoration and adaptation in Australia: the first five yearsPLoS One, 17 (11) (2022), Article e0273325, 10.1371/journal.pone.0273325View in ScopusGoogle Scholar
- Miller et al., 2009J. Miller, E. Muller, C. Rogers, R. Waara, A. Atkinson, K.R.T. Whelan, M.Patterson, B. WitcherCoral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin IslandsCoral Reefs, 28 (4) (2009), p. 925, 10.1007/s00338-009-0531-7View in ScopusGoogle Scholar
- Mizerek et al., 2018T.L. Mizerek, A.H. Baird, J.S. MadinSpecies traits as indicators of coral bleachingCoral Reefs, 37 (3) (2018), pp. 791-800CrossrefView in ScopusGoogle Scholar
- Mohamed et al., 2023A.R. Mohamed, M.A. Ochsenkühn, A.M. Kazlak, A. Moustafa, S.A.AminThe coral microbiome: towards an understanding of the molecular mechanisms of coral–microbiota interactionsFEMS Microbiol. Rev., 47 (2) (2023), 10.1093/femsre/fuad005Google Scholar
- Mora et al., 2016C. Mora, N.A. Graham, M. NyströmEcological limitations to the resilience of coral reefsCoral Reefs, 35 (2016), pp. 1271-1280CrossrefView in ScopusGoogle Scholar
- Morris et al., 2019L.A. Morris, C.R. Voolstra, K.M. Quigley, D.G. Bourne, L.K. BayNutrient availability and metabolism affect the stability of coral–Symbiodiniaceae symbiosesTrends Microbiol., 27 (8) (2019), pp. 678-689View PDFView articleView in ScopusGoogle Scholar
- Mueses et al., 2013M.A. Mueses, F. Machuca-Martinez, G. Li PumaEffective quantum yield and reaction rate model for evaluation of photocatalytic degradation of water contaminants in heterogeneous pilot-scale solar photoreactorsChem. Eng. J., 215-216 (2013), pp. 937-947, 10.1016/j.cej.2012.11.076View PDFView articleView in ScopusGoogle Scholar
- Munday et al., 2009P. Munday, J. Leis, J. Lough, C. Paris, M. Kingsford, M.L. Berumen, J.LambrechtsClimate change and coral reef connectivityCoral Reefs, 28 (2) (2009), pp. 379-395CrossrefView in ScopusGoogle Scholar
- Naugle et al., 2024M.S. Naugle, H. Denis, V.J.L. Mocellin, P.W. Laffy, I. Popovic, L.K. Bay, E.J.HowellsHeat tolerance varies considerably within a reef-building coral species on the Great Barrier ReefCommunications Earth & Environment, 5 (1) (2024), p. 525, 10.1038/s43247-024-01649-4View in ScopusGoogle Scholar
- Nitschke et al., 2024M.R. Nitschke, D. Abrego, C.E. Allen, C. Alvarez-Roa, N.M. Boulotte, P.Buerger, W.Y. Chan, W.A.F. Neto, E. Ivory, B. JohnstonThe use of experimentally evolved coral photosymbionts for reef restorationTrends Microbiol., 32 (12) (2024), pp. 1241-1252View PDFView articleView in ScopusGoogle Scholar
- Ørsted et al., 2019M. Ørsted, A.A. Hoffmann, E. Sverrisdóttir, K.L. Nielsen, T.N. KristensenGenomic variation predicts adaptive evolutionary responses better than population bottleneck historyPLoS Genet., 15 (6) (2019), Article e1008205CrossrefView in ScopusGoogle Scholar
- Paxton et al., 2016C.W. Paxton, M.V.B. Baria, V.M. Weis, S. HariiEffect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitiferaZygote, 24 (4) (2016), pp. 511-516, 10.1017/S0967199415000477View in ScopusGoogle Scholar
- Pratchett et al., 2020M.S. Pratchett, C.F. Caballes, S.J. Newman, S.K. Wilson, V. Messmer, D.J. PratchettBleaching susceptibility of aquarium corals collected across northern AustraliaCoral Reefs, 39 (3) (2020), pp. 663-673, 10.1007/s00338-020-01939-1View in ScopusGoogle Scholar
- Qin et al., 2019Z. Qin, K. Yu, B. Chen, Y. Wang, J. Liang, W. Luo, L. Xu, X. HuangDiversity of Symbiodiniaceae in 15 coral species from the southern South China Sea: potential relationship with coral thermal adaptability [original research]Front. Microbiol., 10 (2019), 10.3389/fmicb.2019.02343Google Scholar
- Quigley and van Oppen, 2022K.M. Quigley, M.J.H. van OppenPredictive models for the selection of thermally tolerant corals based on offspring survivalNat. Commun., 13 (1) (2022), p. 1543, 10.1038/s41467-022-28956-8View in ScopusGoogle Scholar
- Quigley et al., 2018K.M. Quigley, A.C. Baker, M.A. Coffroth, B.L. Willis, M.J.H. van OppenBleaching resistance and the role of algal endosymbiontsM.J.H. van Oppen, J.M. Lough (Eds.), Coral Bleaching: Patterns, Processes, Causes and Consequences, Springer International Publishing (2018), pp. 111-151, 10.1007/978-3-319-75393-5_6Google Scholar
- Quigley et al., 2019K.M. Quigley, L.K. Bay, M.J.H. van OppenThe active spread of adaptive variation for reef resilienceEcol. Evol., 9 (19) (2019), pp. 11122-11135, 10.1002/ece3.5616View in ScopusGoogle Scholar
- Quigley et al., 2020aK.M. Quigley, L.K. Bay, M.J.H. van OppenGenome-wide SNP analysis reveals an increase in adaptive genetic variation through selective breeding of coralMol. Ecol., 29 (12) (2020), pp. 2176-2188, 10.1111/mec.15482View in ScopusGoogle Scholar
- Quigley et al., 2020bK.M. Quigley, C.J. Randall, M.J.H. van Oppen, L.K. BayAssessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juvenilesBiology Open, 9 (1) (2020), 10.1242/bio.047316Google Scholar
- Quigley et al., 2021aK.M. Quigley, C. Alvarez Roa, V.H. Beltran, B. Leggat, B.L. WillisExperimental evolution of the coral algal endosymbiont, Cladocopium goreaui: lessons learnt across a decade of stress experiments to enhance coral heat toleranceRestor. Ecol., 29 (3) (2021), Article e13342, 10.1111/rec.13342View in ScopusGoogle Scholar
- Quigley et al., 2021bK.M. Quigley, M. Marzonie, B. Ramsby, D. Abrego, G. Milton, M.J.H.van Oppen, L.K. BayVariability in fitness trade-offs amongst coral juveniles with mixed genetic backgrounds held in the wild [original research]Front. Mar. Sci., 8 (2021), 10.3389/fmars.2021.636177Google Scholar
- Quigley et al., 2022aK.M. Quigley, C. Alvarez Roa, J.-B. Raina, M. Pernice, M. van OppenHeat-Evolved Microalgal Symbionts Increase Thermal Bleaching Tolerance of Coral Juveniles Without a Trade-Off Against Growth(2022)Available at SSRN 3981099Google Scholar
- Quigley et al., 2022bK.M. Quigley, B. Ramsby, P. Laffy, J. Harris, V.J.L. Mocellin, L.K. BaySymbioses are restructured by repeated mass coral bleachingSci. Adv., 8 (49) (2022), Article eabq8349, 10.1126/sciadv.abq8349View in ScopusGoogle Scholar
- R CoreTeam, n.d.R CoreTeam, A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/.Google Scholar
- Richards et al., 2023T.J. Richards, K. McGuigan, J.D. Aguirre, A. Humanes, Y.-M. Bozec, P.J.Mumby, C. RiginosMoving beyond heritability in the search for coral adaptive potentialGlob. Chang. Biol., 29 (14) (2023), pp. 3869-3882, 10.1111/gcb.16719View in ScopusGoogle Scholar
- Rinkevich, 2019B. RinkevichCoral chimerism as an evolutionary rescue mechanism to mitigate global climate change impactsGlob. Chang. Biol., 25 (4) (2019), pp. 1198-1206, 10.1111/gcb.14576View in ScopusGoogle Scholar
- Rose et al., 2018N.H. Rose, R.A. Bay, M.K. Morikawa, S.R. PalumbiPolygenic evolution drives species divergence and climate adaptation in coralsEvolution, 72 (1) (2018), pp. 82-94, 10.1111/evo.13385View in ScopusGoogle Scholar
- Rudin-Bitterli et al., 2021T.S. Rudin-Bitterli, J.P. Evans, N.J. MitchellFitness consequences of targeted gene flow to counter impacts of drying climates on terrestrial-breeding frogsCommunications Biology, 4 (1) (2021), p. 1195, 10.1038/s42003-021-02695-wView in ScopusGoogle Scholar
- Sakai et al., 2024Y. Sakai, H.H. Yamamoto, S. MaruyamaLong-term aquarium records delineate the synchronized spawning strategy of Acropora coralsR. Soc. Open Sci., 11 (5) (2024), Article 240183, 10.1098/rsos.240183View in ScopusGoogle Scholar
- Salman et al., 2019M. Salman, Z.U. Zia, I.A. Rana, R.H. Maqsood, S. Ahmad, A. Bakhsh, M.T. AzharGenetic effects conferring heat tolerance in upland cotton (Gossypium hirsutum L.)J. Cotton Res., 2 (1) (2019), p. 9, 10.1186/s42397-019-0025-2View in ScopusGoogle Scholar
- Sambucetti et al., 2013P. Sambucetti, A.C. Scannapieco, V. Loeschcke, F.M. NorryHeat-stress survival in the pre-adult stage of the life cycle in an intercontinental set of recombinant inbred lines of Drosophila melanogasterJ. Exp. Biol., 216 (15) (2013), pp. 2953-2959, 10.1242/jeb.079830View in ScopusGoogle Scholar
- Schindelin et al., 2012J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T.Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V.Hartenstein, K. Eliceiri, P. Tomancak, A. CardonaFiji: an open-source platform for biological-image analysisNat. Methods, 9 (7) (2012), pp. 676-682, 10.1038/nmeth.2019View in ScopusGoogle Scholar
- Segal, 2021B.D. SegalToward replicability with confidence intervals for the exceedance probabilityAm. Stat., 75 (2) (2021), pp. 128-138CrossrefView in ScopusGoogle Scholar
- Sheets et al., 2018E.A. Sheets, P.A. Warner, S.R. PalumbiAccurate population genetic measurements require cryptic species identification in coralsCoral Reefs, 37 (2) (2018), pp. 549-563, 10.1007/s00338-018-1679-9View in ScopusGoogle Scholar
- Siebeck et al., 2006U. Siebeck, N. Marshall, A. Klüter, O. Hoegh-GuldbergMonitoring coral bleaching using a colour reference cardCoral Reefs, 25 (3) (2006), pp. 453-460CrossrefView in ScopusGoogle Scholar
- Skirving et al., 2019W.J. Skirving, S.F. Heron, B.L. Marsh, G. Liu, J.L. De La Cour, E.F. Geiger, C.M. EakinThe relentless march of mass coral bleaching: a global perspective of changing heat stressCoral Reefs, 38 (4) (2019), pp. 547-557, 10.1007/s00338-019-01799-4View in ScopusGoogle Scholar
- Souter et al., 2021D. Souter, S. Planes, J. Wicquart, M. Logan, D. Obura, F. StaubStatus of coral reefs of the world: 2020Global Coral Reef Monitoring network (GCRMN) and International Coral Reef ….(2021)Google Scholar
- Stephan et al., 2009K.E. Stephan, W.D. Penny, J. Daunizeau, R.J. Moran, K.J. FristonBayesian model selection for group studiesNeuroImage, 46 (4) (2009), pp. 1004-1017, 10.1016/j.neuroimage.2009.03.025View PDFView articleView in ScopusGoogle Scholar
- Strader and Quigley, 2022M.E. Strader, K.M. QuigleyThe role of gene expression and symbiosis in reef-building coral acquired heat toleranceNat. Commun., 13 (1) (2022), p. 4513, 10.1038/s41467-022-32217-zView in ScopusGoogle Scholar
- Stuart-Smith et al., 2018R.D. Stuart-Smith, C.J. Brown, D.M. Ceccarelli, G.J. EdgarEcosystem restructuring along the Great Barrier Reef following mass coral bleachingNature, 560 (7716) (2018), pp. 92-96, 10.1038/s41586-018-0359-9View in ScopusGoogle Scholar
- Sully et al., 2019S. Sully, D.E. Burkepile, M.K. Donovan, G. Hodgson, R. van WoesikA global analysis of coral bleaching over the past two decadesNat. Commun., 10 (1) (2019), p. 1264, 10.1038/s41467-019-09238-2View in ScopusGoogle Scholar
- Takahashi et al., 1997T. Takahashi, Y. Muneoka, J. Lohmann, M.S.L. De Haro, G. Solleder, T.C. Bosch, C.N. David, H.R. Bode, O. Koizumi, H. ShimizuSystematic isolation of peptide signal molecules regulating development in hydra: LWamide and PW familiesProc. Natl. Acad. Sci., 94 (4) (1997), pp. 1241-1246View in ScopusGoogle Scholar
- Tavakoli-Kolour et al., 2023P. Tavakoli-Kolour, F. Sinniger, M. Morita, T. Nakamura, S. HariiVariability in thermal stress thresholds of corals across depths [original research]Front. Mar. Sci., 10 (2023), 10.3389/fmars.2023.1210662Google Scholar
- Torda and Quigley, 2022G. Torda, K. QuigleyDrivers of adaptive capacity in wild populations: implications for genetic interventionsFront. Mar. Sci., 9 (2022), Article 947989, 10.3389/fmars.2022.947989View in ScopusGoogle Scholar
- van Oppen et al., 2014M.J. van Oppen, E. Puill-Stephan, P. Lundgren, G. De’ath, L.K. BayFirst-generation fitness consequences of interpopulational hybridisation in a Great Barrier Reef coral and its implications for assisted migration managementCoral Reefs, 33 (3) (2014), pp. 607-611CrossrefView in ScopusGoogle Scholar
- van Oppen et al., 2015M.J.H. van Oppen, J.K. Oliver, H.M. Putnam, R.D. GatesBuilding coral reef resilience through assisted evolutionProc. Natl. Acad. Sci., 112 (8) (2015), pp. 2307-2313, 10.1073/pnas.1422301112View in ScopusGoogle Scholar
- Vijendravarma and Kawecki, 2013R.K. Vijendravarma, T.J. KaweckiEpistasis and maternal effects in experimental adaptation to chronic nutritional stress in DrosophilaJ. Evol. Biol., 26 (12) (2013), pp. 2566-2580, 10.1111/jeb.12248View in ScopusGoogle Scholar
- Ward and Harrison, 2000S. Ward, P. HarrisonChanges in gametogenesis and fecundity of acroporid corals that were exposed to elevated nitrogen and phosphorus during the ENCORE experimentJ. Exp. Mar. Biol. Ecol., 246 (2) (2000), pp. 179-221, 10.1016/S0022-0981(99)00182-3View PDFView articleView in ScopusGoogle Scholar
- Weeriyanun et al., 2022P. Weeriyanun, R.B. Collins, A. Macadam, H. Kiff, J.L. Randle, K.M.QuigleyPredicting selection–response gradients of heat tolerance in a widespread reef-building coralJ. Exp. Biol., 225 (Suppl_1) (2022), 10.1242/jeb.243344Google Scholar
- Wickham et al., 2016H. Wickham, W. Chang, M.H. WickhamPackage ‘ggplot2’Create elegant data visualisations using the grammar of graphics. Version, 2 (1)(2016), pp. 1-189View in ScopusGoogle Scholar
- Zeebe and Wolf-Gladrow, 2001R.E. Zeebe, D. Wolf-GladrowCO2 in Seawater: Equilibrium, Kinetics, IsotopesGulf Professional Publishing (2001)Google Scholar
- Zuchowicz et al., 2021N. Zuchowicz, J. Daly, J. Bouwmeester, C. Lager, E.M. Henley, C.I.Nuñez Lendo, M. HagedornAssessing coral sperm motilitySci. Rep., 11 (1) (2021), p. 61, 10.1038/s41598-020-79732-xView in ScopusGoogle Scholar