Climate change impacts internal migration worldwide

Image from Roman Hoffmann, Guy Abel, Maurizio Malpede, Raya Muttarak, Marco Percoco. Drought and aridity influence internal migration worldwide. Nature Climate Change, 2024; DOI: 10.1038/s41558-024-02165-1 : Differences in migration impacts of drought and aridity across world regions a, Differences in migration impacts by the geographical location of the subnational regions distinguishing effects across world regions (n = 107,840). The x axis shows the marginal effects and CI 90 (error bars) of a 1 s.d. increase in aridity levels on out-migration rates. The underlying full models are displayed in Supplementary Table 9. b, Modelled migration changes under a 4 °C global warming scenario based on projected changes in dryness in the regions until the end of the century⁴⁵. For the prediction, extended models (Supplementary Table 10) were used to estimate differential migration responses by world region and baseline aridity level (reference period 2001–2020) distinguishing between hyper-arid/arid, semi-arid, subhumid and humid regions. The derived predicted marginal effects were combined with the projected changes in the AI in the regions to explore potential impacts on internal migration.

Date:
October 15, 2024
Source:
International Institute for Applied Systems Analysis
Summary:
The influence of climate change on migration, both current and future, has garnered significant attention from the public and policymakers over the past decade. A new study has provided the first comprehensive analysis of how climate factors — specifically drought and aridity — affect internal migration.
Share:
FULL STORY

The influence of climate change on migration, both current and future, has garnered significant attention from the public and policymakers over the past decade. A new IIASA-led study has provided the first comprehensive analysis of how climate factors — specifically drought and aridity — affect internal migration.

While public discourses often focus on international migration, existing scientific evidence indicates that when climatic factors drive migration, it often results in short distance moves within national borders.

However, there is a lack of scientific studies examining climate-induced internal migration across different countries.

The new study, published in Nature Climate Change, used census microdata from 72 countries spanning the period from 1960 to 2016 to provide the first worldwide assessment of how environmental stress affects migration within national borders.

“Our analysis shows that internal migration — which we defined as movement between subnational regions within a country — increases in regions affected by drought and aridification, especially in hyper-arid and arid regions. The effects are most pronounced in agriculturally dependent and rural areas, where livelihoods are highly vulnerable to changing climate conditions. Many climate-induced migrants move to urban areas, contributing to the accelerated urbanization trends observed in numerous countries,” explains lead author Roman Hoffmann, who leads the Migration and Sustainable Development Research Group at IIASA.

The analysis revealed regional differences in impacts. The effects of drought and aridification were, for example, found to be strongest in parts of Africa, the Middle East, South America, South Asia, and Southern Europe, where agricultural livelihoods are prevalent and the climate is already dry.

In these regions, the combination of economic hardship and environmental challenges creates strong incentives for migration.

Globally, the findings indicate overall more mobility in wealthier areas where migration constraints may be lower.

Within countries, it is typically poorer regions that tend to have higher outmigration rates toward wealthier areas when they are affected by climatic stress.

In addition to regional differences, the study also documents major heterogeneities in migration patterns across population groups.

In less developed countries, younger working-age adults (15-45) with medium levels of education are most likely to migrate in response to drought and increased aridity.

In wealthier countries, older populations across all education levels show stronger migration patterns.

“As climate change continues to increase the frequency and severity of droughts and water scarcity worldwide, more populations will face pressures to seek better living conditions. Our work underscores the need for policies that address both the drivers of migration and the consequences for destination regions. Adequate infrastructure, health services, and social support systems are critical in urban areas that are increasingly absorbing climate-induced migrants,” notes coauthor Guy Abel, a researcher in the IIASA Migration and Sustainable Development Research Group.

Additionally, the research highlights the importance of supporting vulnerable populations, including those who cannot migrate due to resource constraints.

Policies that promote livelihood diversification, social safety nets, and resilience-building in affected communities can help mitigate forced migration and displacement, while also protecting those who remain.

Although the study represents a major step forward in understanding the links between climate change and internal migration, the authors also acknowledge the challenges posed by limited and non-comparable migration data.

The dataset used in the study, extracted from census microdata, provides a robust longitudinal view on internal migration for a large number of countries.

At the same time, it does not capture other forms of movement, including temporal or short-distance mobility, which are also highly relevant in the context of climate change.

“As climate change continues to reshape migration trends, more comprehensive data and continued research will be essential for developing targeted interventions and policy solutions to address the complex relationship between environmental factors and human mobility. Our work highlights the urgent need for a holistic approach to policy development that accounts for both spatial and social differences, recognizing the complex and context-dependent nature of migration dynamics,” concludes coauthor Raya Muttarak, a researcher in the IIASA Migration and Sustainable Development Research Group and professor of Demography and the Department of Statistical Sciences at the University of Bologna, Italy.

 


Story Source:

Materials provided by International Institute for Applied Systems Analysis. Note: Content may be edited for style and length.


Journal Reference:

  1. Roman Hoffmann, Guy Abel, Maurizio Malpede, Raya Muttarak, Marco Percoco. Drought and aridity influence internal migration worldwide. Nature Climate Change, 2024; DOI: 10.1038/s41558-024-02165-1

References:

TY – JOUR
AU – Burrell, A. L.
AU – Evans, J. P.
AU – Kauwe, M. G.
PY – 2020
DA – 2020//
TI – Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification
JO – Nat. Commun.
VL – 11
ID – Burrell2020
ER –
TY – STD
TI – World Atlas of Desertification—Rethinking Land Degradation and Sustainable Land Management (European Commission Publications Office, 2018).
ID – ref2
ER –
TY – STD
TI – IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H. et al.) (Cambridge Univ. Press, 2022).
ID – ref3
ER –
TY – JOUR
AU – McLeman, R.
AU – Smit, B.
PY – 2006
DA – 2006//
TI – Migration as an adaptation to climate change
JO – Clim. Change
VL – 76
ID – McLeman2006
ER –
TY – JOUR
AU – Hunter, L. M.
AU – Luna, J. K.
AU – Norton, R. M.
PY – 2015
DA – 2015//
TI – Environmental dimensions of migration
JO – Annu. Rev. Socio.
VL – 41
ID – Hunter2015
ER –
TY – JOUR
AU – Borderon, M.
PY – 2019
DA – 2019//
TI – Migration influenced by environmental change in Africa: a systematic review of empirical evidence
JO – Demogr. Res
VL – 41
ID – Borderon2019
ER –
TY – STD
TI – Šedová, B., Čizmaziová, L. & Cook, A. A Meta-Analysis of Climate Migration Literature (CEPA, 2021).
ID – ref7
ER –
TY – STD
TI – Beine, M. & Jeusette, L. A Meta-Analysis of the Literature on Climate Change and Migration (IZA, 2019).
ID – ref8
ER –
TY – JOUR
AU – Cattaneo, C.
PY – 2019
DA – 2019//
TI – Human migration in the era of climate change
JO – Rev. Environ. Econ. Policy
VL – 13
ID – Cattaneo2019
ER –
TY – JOUR
AU – Hoffmann, R.
AU – Dimitrova, A.
AU – Muttarak, R.
AU – Crespo Cuaresma, J.
AU – Peisker, J.
PY – 2020
DA – 2020//
TI – A meta-analysis of country level studies on environmental change and migration
JO – Nat. Clim. Change
VL – 10
ID – Hoffmann2020
ER –
TY – JOUR
AU – Cai, R.
AU – Feng, S.
AU – Oppenheimer, M.
AU – Pytlikova, M.
PY – 2016
DA – 2016//
TI – Climate variability and international migration: the importance of the agricultural linkage
JO – J. Environ. Econ. Manag.
VL – 79
ID – Cai2016
ER –
TY – JOUR
AU – Beine, M.
AU – Parsons, C.
PY – 2015
DA – 2015//
TI – Climatic factors as determinants of international migration
JO – Scand. J. Econ.
VL – 117
ID – Beine2015
ER –
TY – JOUR
AU – Cattaneo, C.
AU – Peri, G.
PY – 2016
DA – 2016//
TI – The migration response to increasing temperatures
JO – J. Dev. Econ.
VL – 122
ID – Cattaneo2016
ER –
TY – JOUR
AU – Black, R.
PY – 2011
DA – 2011//
TI – The effect of environmental change on human migration
JO – Glob. Environ. Change
VL – 21
ID – Black2011
ER –
TY – JOUR
AU – Bohra-Mishra, P.
AU – Oppenheimer, M.
AU – Cai, R.
AU – Feng, S.
AU – Licker, R.
PY – 2017
DA – 2017//
TI – Climate variability and migration in the Philippines
JO – Popul. Environ.
VL – 38
ID – Bohra-Mishra2017
ER –
TY – JOUR
AU – Gray, C.
AU – Mueller, V.
PY – 2012
DA – 2012//
TI – Drought and population mobility in rural Ethiopia
JO – World Dev.
VL – 40
ID – Gray2012
ER –
TY – JOUR
AU – Mueller, V.
AU – Gray, C.
AU – Kosec, K.
PY – 2014
DA – 2014//
TI – Heat stress increases long-term human migration in rural Pakistan
JO – Nat. Clim. Change
VL – 4
ID – Mueller2014
ER –
TY – JOUR
AU – Henderson, J. V.
AU – Storeygard, A.
AU – Deichmann, U.
PY – 2017
DA – 2017//
TI – Has climate change driven urbanization in Africa?
JO – J. Dev. Econ.
VL – 124
ID – Henderson2017
ER –
TY – JOUR
AU – Marchiori, L.
AU – Maystadt, J. F.
AU – Schumacher, I.
PY – 2017
DA – 2017//
TI – Is environmentally-induced income variability a driver of migration?
JO – Migr. Dev.
VL – 6
ID – Marchiori2017
ER –
TY – JOUR
AU – Niva, V.
PY – 2021
DA – 2021//
TI – Global migration is driven by the complex interplay between environmental and social factors
JO – Environ. Res. Lett.
VL – 16
ID – Niva2021
ER –
TY – STD
TI – Clement, V. et al. Groundswell Part 2: Acting on Internal Climate Migration (World Bank, 2021).
ID – ref21
ER –
TY – STD
TI – Integrated Public Use Microdata Series InternationalVersion 7.2 (IPUMS, 2020); https://international.ipums.org/international-action/variables/group
UR – https://international.ipums.org/international-action/variables/group
ID – ref22
ER –
TY – STD
TI – Abel, G. J., Muttarak, R. & Stephany, F. Climatic Shocks and Internal Migration: Evidence from 442 Million Personal Records in 64 Countries (World Bank Group, 2022).
ID – ref23
ER –
TY – JOUR
AU – Abel, G. J.
AU – Sander, N.
PY – 2014
DA – 2014//
TI – Quantifying global international migration flows
JO – Science
VL – 343
ID – Abel2014
ER –
TY – JOUR
AU – Garcia, A. J.
AU – Pindolia, D. K.
AU – Lopiano, K. K.
AU – Tatem, A. J.
PY – 2015
DA – 2015//
TI – Modeling internal migration flows in sub-Saharan Africa using census microdata
JO – Migr. Stud.
VL – 3
ID – Garcia2015
ER –
TY – JOUR
AU – Beguería, S.
AU – Vicente-Serrano, S. M.
AU – Angulo-Martínez, M.
PY – 2010
DA – 2010//
TI – A multiscalar global drought dataset: the SPEIbase: a new gridded product for the analysis of drought variability and impacts
JO – Bull. Am. Meteorol. Soc.
VL – 91
ID – Beguería2010
ER –
TY – STD
TI – Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data7, 109 (2020).
ID – ref27
ER –
TY – JOUR
AU – Beine, M.
AU – Bertoli, S.
AU – Fernández-Huertas Moraga, J.
PY – 2016
DA – 2016//
TI – A practitioners’ guide to gravity models of international migration
JO – World Econ.
VL – 39
ID – Beine2016
ER –
TY – JOUR
AU – Bell, M.
PY – 2015
DA – 2015//
TI – Internal migration and development: comparing migration intensities around the world
JO – Popul. Dev. Rev.
VL – 41
ID – Bell2015
ER –
TY – JOUR
AU – Cirillo, M.
AU – Cattaneo, A.
AU – Miller, M.
AU – Sadiddin, A.
PY – 2022
DA – 2022//
TI – Establishing the link between internal and international migration: evidence from Sub-Saharan Africa
JO – World Dev.
VL – 157
ID – Cirillo2022
ER –
TY – JOUR
AU – Lerch, M.
PY – 2020
DA – 2020//
TI – International migration and city growth in the Global South: an analysis of IPUMS data for seven countries, 1992–2013
JO – Popul. Dev. Rev.
VL – 46
ID – Lerch2020
ER –
TY – JOUR
AU – Thiede, B.
AU – Gray, C.
AU – Mueller, V.
PY – 2016
DA – 2016//
TI – Climate variability and inter-provincial migration in South America, 1970–2011
JO – Glob. Environ. Change
VL – 41
ID – Thiede2016
ER –
TY – JOUR
AU – Thiede, B. C.
AU – Robinson, A.
AU – Gray, C.
PY – 2024
DA – 2024//
TI – Climatic variability and internal migration in Asia: evidence from big microdata
JO – Popul. Dev. Rev.
VL – 50
ID – Thiede2024
ER –
TY – STD
TI – Manning, P. & Trimmer, T. Migration in World History (Routledge, 2020).
ID – ref34
ER –
TY – JOUR
AU – Levy, M. B.
AU – Wadycki, W. J.
PY – 1974
DA – 1974//
TI – Education and the decision to migrate: an econometric analysis of migration in Venezuela
JO – Econometrica
VL – 42
ID – Levy1974
ER –
TY – STD
TI – Abel, G. J. & Cohen, J. E. Bilateral international migration flow estimates updated and refined by sex. Sci. Data9, 173 (2022).
ID – ref36
ER –
TY – JOUR
AU – Gasparrini, A.
AU – Armstrong, B.
AU – Kenward, M. G.
PY – 2010
DA – 2010//
TI – Distributed lag non-linear models
JO – Stat. Med.
VL – 29
ID – Gasparrini2010
ER –
TY – JOUR
AU – McLeman, R.
PY – 2018
DA – 2018//
TI – Thresholds in climate migration
JO – Popul. Environ.
VL – 39
ID – McLeman2018
ER –
TY – JOUR
AU – Meze-Hausken, E.
PY – 2008
DA – 2008//
TI – On the (im-)possibilities of defining human climate thresholds
JO – Clim. Change
VL – 89
ID – Meze-Hausken2008
ER –
TY – JOUR
AU – Nawrotzki, R. J.
AU – DeWaard, J.
AU – Bakhtsiyarava, M.
AU – Ha, J. T.
PY – 2017
DA – 2017//
TI – Climate shocks and rural–urban migration in Mexico: exploring nonlinearities and thresholds
JO – Clim. Change
VL – 140
ID – Nawrotzki2017
ER –
TY – STD
TI – Dow, K., Berkhout, F. & Preston, B. L. Limits to adaptation to climate change: a risk approach. Curr. Opin. Environ. Sustain.5, 384–391 (2013).
ID – ref41
ER –
TY – JOUR
AU – Hoffmann, R.
AU – Wiederkehr, C.
AU – Dimitrova, A.
AU – Hermans, K.
PY – 2022
DA – 2022//
TI – Agricultural livelihoods, adaptation, and environmental migration in sub-Saharan drylands: a meta-analytical review
JO – Environ. Res. Lett.
VL – 17
ID – Hoffmann2022
ER –
TY – STD
TI – Warner, K. et al. Evidence from the Frontlines of Climate Change: Loss and Damage to Communities Despite Coping and Adaptation (The Loss and Damage Collaboration, 2012).
ID – ref43
ER –
TY – JOUR
AU – Bertoli, S.
AU – Fernández-Huertas Moraga, J.
PY – 2013
DA – 2013//
TI – Multilateral resistance to migration
JO – J. Dev. Econ.
VL – 102
ID – Bertoli2013
ER –
TY – JOUR
AU – Wang, X.
AU – Jiang, D.
AU – Lang, X.
PY – 2021
DA – 2021//
TI – Future changes in Aridity Index at two and four degrees of global warming above preindustrial levels
JO – Int. J. Climatol.
VL – 41
ID – Wang2021
ER –
TY – STD
TI – Zickgraf, C. in Routledge Handbook of Environmental Displacement and Migration (eds McLeman, R. & Gemenne, F.) 71–84 (Routledge, 2018).
ID – ref46
ER –
TY – JOUR
AU – Mallick, B.
AU – Schanze, J.
PY – 2020
DA – 2020//
TI – Trapped or voluntary? Non-migration despite climate risks
JO – Sustainability
VL – 12
ID – Mallick2020
ER –
TY – JOUR
AU – Nawrotzki, R. J.
AU – DeWaard, J.
PY – 2018
DA – 2018//
TI – Putting trapped populations into place: climate change and inter-district migration flows in Zambia
JO – Reg. Environ. Change
VL – 18
ID – Nawrotzki2018
ER –
TY – JOUR
AU – Cundill, G.
PY – 2021
DA – 2021//
TI – Toward a climate mobilities research agenda: intersectionality, immobility, and policy responses
JO – Glob. Environ. Change
VL – 69
ID – Cundill2021
ER –
TY – JOUR
AU – Benveniste, H.
AU – Oppenheimer, M.
AU – Fleurbaey, M.
PY – 2022
DA – 2022//
TI – Climate change increases resource-constrained international immobility
JO – Nat. Clim. Change
VL – 12
ID – Benveniste2022
ER –
TY – JOUR
AU – Farbotko, C.
AU – Dun, O.
AU – Thornton, F.
AU – McNamara, K. E.
AU – McMichael, C.
PY – 2020
DA – 2020//
TI – Relocation planning must address voluntary immobility
JO – Nat. Clim. Change
VL – 10
ID – Farbotko2020
ER –
TY – JOUR
AU – Mendelsohn, R.
PY – 2008
DA – 2008//
TI – The impact of climate change on agriculture in developing countries
JO – J. Nat. Resour. Policy Res.
VL – 1
ID – Mendelsohn2008
ER –
TY – JOUR
AU – Schlenker, W.
AU – Lobell, D. B.
PY – 2010
DA – 2010//
TI – Robust negative impacts of climate change on African agriculture
JO – Environ. Res. Lett.
VL – 5
ID – Schlenker2010
ER –
TY – JOUR
AU – Savaş, E. B.
AU – Spaan, J.
AU – Henkens, K.
AU – Kalmijn, M.
AU – Dalen van, H. P.
PY – 2023
DA – 2023//
TI – Migrating to a new country in late life: a review of the literature on international retirement migration
JO – Demogr. Res.
VL – 48
ID – Savaş2023
ER –
TY – STD
TI – Global Education Monitoring Report Ch. 3 (UNESCO, 2019).
ID – ref55
ER –
TY – JOUR
AU – Pasini, A.
AU – Amendola, S.
PY – 2019
DA – 2019//
TI – Linear and nonlinear influences of climatic changes on migration flows: a case study for the ‘Mediterranean bridge’
JO – Environ. Res. Commun.
VL – 1
ID – Pasini2019
ER –
TY – JOUR
AU – Upadhyay, H.
PY – 2015
DA – 2015//
TI – Conceptualizing and contextualizing research and policy for links between climate change and migration
JO – Int. J. Clim. Change Strateg. Manag.
VL – 7
ID – Upadhyay2015
ER –
TY – JOUR
AU – McLeman, R. A.
AU – Hunter, L. M.
PY – 2010
DA – 2010//
TI – Migration in the context of vulnerability and adaptation to climate change: insights from analogues
JO – WIREs Clim. Change
VL – 1
ID – McLeman2010
ER –
TY – JOUR
AU – Hoffmann, R.
PY – 2022
DA – 2022//
TI – Contextualizing climate change impacts on human mobility in African drylands
JO – Earths Future
VL – 10
ID – Hoffmann2022
ER –
TY – JOUR
AU – Muttarak, R.
PY – 2021
DA – 2021//
TI – Demographic perspectives in research on global environmental change
JO – Popul. Stud.
VL – 75
ID – Muttarak2021
ER –
TY – JOUR
AU – Hermans, K.
AU – Garbe, L.
PY – 2019
DA – 2019//
TI – Droughts, livelihoods, and human migration in northern Ethiopia
JO – Reg. Environ. Change
VL – 19
ID – Hermans2019
ER –
TY – STD
TI – Blocher, J. M., Hoffmann, R. & Weisz, H. The effects of environmental and non-environmental shocks on livelihoods and migration in Tanzania. Popul. Environ.46, 7 (2024).
ID – ref62
ER –
TY – JOUR
AU – Haas, H.
PY – 2021
DA – 2021//
TI – A theory of migration: the aspirations–capabilities framework
JO – Comp. Migr. Stud.
VL – 9
ID – Haas2021
ER –
TY – JOUR
AU – Sherbinin, A.
PY – 2022
DA – 2022//
TI – Migration theory in climate mobility research
JO – Front. Clim.
VL – 4
ID – Sherbinin2022
ER –
TY – STD
TI – Vinke, K. & Hoffmann, R. Data for a difficult subject: climate change and human migration. Migr. Policy Pract. J.X, 16–22 (2020).
ID – ref65
ER –
TY – JOUR
AU – Hoffmann, R.
AU – Šedová, B.
AU – Vinke, K.
PY – 2021
DA – 2021//
TI – Improving the evidence base on climate migration: methodological insights from two meta-analyses
JO – Glob. Environ. Change
VL – 71
ID – Hoffmann2021
ER –
TY – JOUR
AU – Huang, J.
AU – Yu, H.
AU – Guan, X.
AU – Wang, G.
AU – Guo, R.
PY – 2016
DA – 2016//
TI – Accelerated dryland expansion under climate change
JO – Nat. Clim. Change
VL – 6
ID – Huang2016
ER –
TY – STD
TI – Rigaud, K. K. et al. Groundswell—Preparing for Internal Climate Migration (World Bank, 2018).
ID – ref68
ER –
TY – STD
TI – 2022 Revision of World Population Prospects. UNhttps://population.un.org/wpp/ (2022).
UR – https://population.un.org/wpp/
ID – ref69
ER –
TY – STD
TI – Kummu, M., Taka, M. & Guillaume, J. H. A. Gridded global datasets for gross domestic product and human development index over 1990–2015. Sci. Data5, 180004 (2018).
ID – ref70
ER –
TY – JOUR
AU – Hsiang, S.
PY – 2016
DA – 2016//
TI – Climate econometrics
JO – Annu. Rev. Resour. Econ.
VL – 8
ID – Hsiang2016
ER –
TY – JOUR
AU – Santos Silva, J. M. C.
AU – Tenreyro, S.
PY – 2006
DA – 2006//
TI – The log of gravity
JO – Rev. Econ. Stat.
VL – 88
ID – Santos Silva2006
ER –
TY – JOUR
AU – Gröschl, J.
AU – Steinwachs, T.
PY – 2017
DA – 2017//
TI – Do natural hazards cause international migration?
JO – CESifo Econ. Stud.
VL – 63
ID – Gröschl2017
ER –
TY – STD
TI – Bergé, L. R. Efficient Estimation of Maximum Likelihood Models with Multiple Fixed-Effects: The R Package FENmlm (RePEc, 2018); https://econpapers.repec.org/RePEc:luc:wpaper:18-13
UR – https://econpapers.repec.org/RePEc:luc:wpaper:18-13
ID – ref74
ER –
TY – JOUR
AU – Spencer, N.
AU – Urquhart, M. -. A.
PY – 2018
DA – 2018//
TI – Hurricane strikes and migration: evidence from storms in Central America and the Caribbean
JO – Weather Clim. Soc.
VL – 10
ID – Spencer2018
ER –
TY – JOUR
AU – Baez, J.
AU – Caruso, G.
AU – Mueller, V.
AU – Niu, C.
PY – 2017
DA – 2017//
TI – Heat exposure and youth migration in Central America and the Caribbean
JO – Am. Econ. Rev.
VL – 107
ID – Baez2017
ER –
TY – STD
TI – Hoffmann, R., Abel, G., Muttarak, R., Malpede, M. & Percoco, M. Replication data and code for: ‘Drought and aridity influence internal migration worldwide’. Harvard Dataversehttps://doi.org/10.7910/DVN/QVLBGN (2024).
ID – ref77
ER –

Pledge Your Vote Now
Change language