Leaftronics!

Image from Rakesh R. Nair et al. Leaftronics: Natural lignocellulose scaffolds for sustainable electronics. Sci. Adv. 2024.

Fig. 1. Lignocellulose quasi-fractals and their coating.
(A) Magnolia LS quasi-fractal structure at different magnifications. Scale bars from left to right: 20 mm, 5 mm, 1 mm, and 200 μm [scanning electron microscopy (SEM) image]. (B) Fabrication process of Leaftronic substrates, showing (1) raw leaf; (2) the extracted lignocellulose scaffold (LS); (3) microscopic illustration of cellulose microfibrils bonded together with lignin and supported by hemicellulose; (4) ethyl cellulose (EC) molecular structure, which, in the solution processed form, is coated onto the extracted lignocellulose scaffold; and (5) image of the final LS-EC substrate. (C) Chitosan (CS) exfoliation process for providing a layer of CS on top of LS-EC: (1) dip-coated scaffold placed on to a CS-coated borosilicate glass slide, which is (2) dried at 90° to 120°C followed by (3) exfoliation and peel-off. Illustration of the hypothesized substrate formation process, showing freshly extracted LS (top) being dip coated in solution processed EC (middle) (the arrows indicate the EC polymer filling up the pores of the leaf scaffold and creating a film due to surface tension as it moves downward under gravity), which, after drying and glass exfoliation (bottom), results in an LS-EC-CS substrate with a smooth, flat side. (D) SEM cross section of an LS-EC-CS substrate with screen-printed Ag (scale bar, 50 μm), and (E) the close-up image of the interface (right; scale bar, 10 μm).

Circuit boards made from leaves could green up electronics’ act

Millions of tons of hard-to-recycle electronic circuit boards are burned or end up in landfills—a replacement based on leaf skeletons could stem that waste.
December 12, 2024 in ANthropocene magazine

In a new spin on green electronics, researchers have made a biodegradable electronic circuit board from tree leaves. Such leaf-based electronics, or “leaftronics” as the team from Dresden University of Technology (TU Dresden) has dubbed it, could reduce millions of tons of waste that humans produce every year.

Today, the world produces over 50 million metric tons of electronic waste a year. That number that is slated to double by 2050. And printed circuit boards (PCBs) – the flat boards onto which all the circuit chips, wires and other components of an electronic gadget are soldered–-constitute a big share of this e-waste.

PCBs are typically made of fiberglass or a composite plastic. The material is difficult to recycle and is usually either dumped in landfills or burned to separate the valuable metals for reuse.

As detailed in the journal Science Advances, the team used the veiny, webbed skeleton of leaves to create their biodegradable substrates. This fine branched structure is made of the same lignocellulose compounds that give its toughness. Postdoctoral researcher Rakesh Nair and colleagues started by stripping away the cells of a magnolia leaf to leave behind the white veined skeleton. They dipped the scaffold into ethyl cellulose, a tough biodegradable polymer.

The resulting leaftronics substrate is smooth, flexible, transparent, and can handle high temperatures. In that sense it rivals plastic and glass, Nair says, but is biodegradable. The researchers could use a laser to cut the substrate, print circuits on it, as well as solder electronic components on top.

To degrade the substrate, the researchers placed it in an ultrasonic acid bath to remove the metals and circuit components. The boards began to degrade after about a month in compost.

“Up until now, substrates made of biodegradable polymers could not be used for electronic device or circuit fabrication, since they naturally do not handle elevated temperatures well,” Nair says. There are ways to improve the thermal and mechanical properties of biodegradable polymers. But, he says, they “often result in these polymers either no longer being biodegradable or requiring complex, high carbon-footprint, chemical processes,” he says.

Others have also made degradable PCBs using paper, silk, and mushroom skins. But the new method that relies on dipping a leaf scaffold in a biodegradable polymer is much simpler and should allow researchers to make specific biodegradable substrates with superior properties.

For example, the researchers also made leaftronics substrates using gelatin, which is a hydrophilic, biodegradable, solution processable material. “But is difficult to work with since it melts around 50-60°C,” Nair says. “However, with reinforcement using leaf-derived lignocellulose [scaffolds], it appears that gelatin could be used as a film even at 180°C.”

Leaftronics should be reliable enough for mass production, he says. But the challenge will be in convincing electronics manufacturers to adopt the technology because of the extremely high PCB durability standards it has set itself. “Currently, circuit boards are made of materials that can last for thousands of years but are put into electronic products designed to become obsolete within a few years. This makes it difficult for biodegradable PBCs to clear the industrial durability standards, even if they can survive the regular production processes.”

Source: Rakesh R. Nair et al. Leaftronics: Natural lignocellulose scaffolds for sustainable electronics. Sci. Adv. 2024.

References:

V. Forti, C. P. Baldé, R. Kuehr, G. Bel, The Global E-waste Monitor 2020: Quantities, Flows and the Circular Economy Potential (United Nations University/United Nations Institute for Training and Research, SCYCLE Programme, International Telecommunication Union, and International Solid Waste Association, 2020).
2
F. P. Silvas, M. M. J. Correa, M. P. Caldas, V. T. de Moraes, D. C. R. Espinosa, J. A. S. Tenório, Printed circuit board recycling: Physical processing and copper extraction by selective leaching. Waste Manag. 46, 503–510 (2015).
3
L. H. Yamane, V. T. de Moraes, D. C. R. Espinosa, J. A. S. Tenório, Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers. Waste Manag. 31, 2553–2558 (2011).
4
S. Mühl, B. Beyer, Bio-organic electronics—Overview and prospects for the future. Electronics 3, 444–461 (2014).
5
M. Irimia-Vladu, E. D. Głowacki, G. Voss, S. Bauer, N. S. Sariciftci, Green and biodegradable electronics. Mater. Today 15, 340–346 (2012).
6
J. Kundu, F. Pati, Y. H. Jeong, D.-W. Cho, “Biomaterials for biofabrication of 3D tissue scaffolds” in Biofabrication (William Andrew Publishing, 2013), pp. 23–46.
7
W. G. Glasser, About making lignin great again—Some lessons from the past. Front. Chem. 7, 565 (2019).
8
Z. Chen, T. Aziz, H. Sun, A. Ullah, A. Ali, L. Cheng, R. Ullah, F. U. Khan, Advances and applications of cellulose bio-composites in biodegradable materials. J. Polym. Environ. 31, 2273–2284 (2023).
9
Y. Zhou, Y. Hu, Z. Tan, T. Zhou, Cellulose extraction from rice straw waste for biodegradable ethyl cellulose films preparation using green chemical technology. J. Clean. Prod. 439, 140839 (2024).
10
N. B. Erdal, M. Hakkarainen, Degradation of cellulose derivatives in laboratory, man-made, and natural environments. Biomacromolecules 23, 2713–2729 (2022).
11
Z. Jiang, T. Ngai, Recent advances in chemically modified cellulose and its derivatives for food packaging applications: A review. Polymers 14, 1533 (2022).
12
M. Eck, S. T. Schwab, T. F. Nelson, K. Wurst, S. Iberl, D. Schleheck, C. Link, G. Battagliarin, S. Mecking, Biodegradable high-density polyethylene-like material. Angew. Chem. Int. Ed. Engl. 62, e202213438 (2023).
13
N. T. Lotto, M. R. Calil, C. G. F. Guedes, D. S. Rosa, The effect of temperature on the biodegradation test. Mater. Sci. Eng. C 24, 659–662 (2004).
14
Y. Lu, W. Yuan, Superhydrophobic/superoleophilic and reinforced ethyl cellulose sponges for oil/water separation: Synergistic strategies of cross-linking, carbon nanotube composite, and nanosilica modification. ACS Appl. Mater. Interfaces 9, 29167–29176 (2017).
15
X. Xu, J. Li, X. Pan, X. Lin, Z. Li, Preparation of high tensile strength modified cellulose-based strippable coating and its application on radioactive decontamination at low-temperature. Mater. Today Commun.34, 105088 (2023).
16
D. W. Pearce, R. K. Turner, Economics of the natural resources and the environment. Am. J. Agric. Econ. 73, 227–228 (1990).
17
A. Alcalde-Calonge, F. J. Sáez-Martínez, P. Ruiz-Palomino, Evolution of research on circular economy and related trends and topics. A thirteen-year review. Ecol. Inform. 70, 101716 (2022).
18
M. N. Nassajfar, I. Deviatkin, V. Leminen, M. Horttanainen, Alternative materials for printed circuit board production: An environmental perspective. Sustainability 13, 12126 (2021).
19
C. Lu, Y. Shen, X. Wang, S. Xu, J. Wang, Q. Yong, F. Chu, Biomimetic ultra-strong, ultra-tough, degradable cellulose-based composites for multi-stimuli responsive shape memory. Int. J. Biol. Macromol. 226, 1468–1476 (2023).
20
D. Parker, Y. Daguerre, G. Dufil, D. Mantione, E. Solano, E. Cloutet, G. Hadziioannou, T. Näsholm, M. Berggren, E. Pavlopoulou, E. Stavrinidou, Biohybrid plants with electronic roots via in vivo polymerization of conjugated oligomers. Mater. Horiz. 8, 3295–3305 (2021).
21
M. Davidovich-Pinhas, S. Barbut, A. G. Marangoni, Physical structure and thermal behavior of ethylcellulose. Cellulose 21, 3243–3255 (2014).
22
K. Wasilewska, K. Winnicka, Ethylcellulose–A pharmaceutical excipient with multidirectional application in drug dosage forms development. Materials 12, 3386 (2019).
23
V. Bampidis, V. Bampidis, G. Azimonti, M. de Lourdes Bastos, H. Christensen, B. Dusemund, M. Durjava, M. Kouba, M. López-Alonso, S. L. Puente, F. Marcon, B. Mayo, A. Pechová, M. Petkova, F. Ramos, R. E. Villa, R. Woutersen, M. Anguita, J. Galobart, P. Manini, M. V. Vettori, M. Innocenti, Safety and efficacy of ethyl cellulose for all animal species. EFSA J. 18, 14 (2020).
24
R. W. Dickey, W. W. Dickhoff, “Dispersants and Seafood Safety Assessment of the potential impact of COREXIT oil dispersants on seafood safety. A White Paper for the Coastal Response Research Center. Dispersant Initiative and Workshop “The Future of Dispersant Use in Spill Response” (Coastal Response Research Center, 2011).
25
J. Ge, M. Li, J. Fan, C. Celia, Y. Xie, Q. Chang, X. Deng, Synthesis, characterization, and antibacterial activity of chitosan-chelated silver nanoparticles. J. Biomater. Sci. Polym. Ed. 35, 45–62 (2024).
26
Z. Li, J. Ma, R. Li, X. Yin, W. Dong, C. Pan, Fabrication of a blood compatible composite membrane from chitosan nanoparticles, ethyl cellulose and bacterial cellulose sulfate. RSC Adv. 8, 31322–31330 (2018).
27
P. Shi, Y. Li, L. Zhang, Fabrication and property of chitosan film carrying ethyl cellulose microspheres. Carbohydr. Polym. 72, 490–499 (2008).
28
A. Anand, M. M. Islam, R. Meitzner, U. S. Schubert, H. Hoppe, Introduction of a novel figure of merit for the assessment of transparent conductive electrodes in photovoltaics: Exact and approximate form. Adv. Energy Mater. 11, 2100875 (2021).
29
M. A. Mohd Asri, N. A. Ramli, A. N. Nordin, Electrical performance and reliability assessment of silver inkjet printed circuits on flexible substrates. J. Mater. Sci. Mater. Electron. 32, 16024–16037 (2021).
30
A. Claypole, J. Claypole, L. Kilduff, D. Gethin, T. Claypole, Stretchable carbon and silver inks for wearable applications. Nanomaterials 11, 1200 (2021).
31
M. Kayaharman, H. Argasinski, J. Atkinson, K. Zhang, Y. N. Zhou, I. A. Goldthorpe, Enhancing and understanding the high stretchability of printable, conductive silver nanowire ink. J. Electron. Mater. 54, 4634–4643 (2023).
32
M. Davidovich-Pinhas, S. Barbut, A. G. Marangoni, The gelation of oil using ethyl cellulose. Carbohydr. Polym. 117, 869–878 (2015).
33
Merck KGaA, “Ethyl cellulose,” Sigma-Aldrich; www.sigmaaldrich.com/DE/en/product/aldrich/200689.
34
P. V. Kozlov, G. I. Burdygina, The structure and properties of solid gelatin and the principles of their modification. Polymer 24, 651–666 (1983).
35
L. Mehra, S. Mehra, N. Tiwari, T. Singh, H. Rawat, S. Belagavi, A. Jaimini, G. Mittal, Fabrication, characterization and evaluation of the efficacy of gelatin/hyaluronic acid microporous scaffolds suffused with aloe-vera in a rat burn model. J. Biomater. Appl. 36, 1346–1358 (2022).
36
S. Nandy, S. Goswami, A. Marques, D. Gaspar, P. Grey, I. Cunha, D. Nunes, A. Pimentel, R. Igreja, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, Cellulose: A contribution for the zero e-waste challenge. Adv. Mater. Technol. 6, 2000994 (2021).
37
R. R. Nair, Organic electrochemical transistor on paper for the detection of halide anions in biological analytes. Flex. Print. Electron. 5, 045004 (2020).
38
J. Liu, C. Yang, H. Wu, Z. Lin, Z. Zhang, R. Wang, B. Li, F. Kang, L. Shi, C. P. Wong, Future paper based printed circuit boards for green electronics: Fabrication and life cycle assessment. Energy Environ. Sci. 7, 3674–3682 (2014).
39
M. Sun, Y. Wang, L. Shi, J. J. Klemeš, Uncovering energy use, carbon emissions and environmental burdens of pulp and paper industry: A systematic review and meta-analysis. Renew. Sustain. Energy Rev. 92, 823–833 (2018).
40
E.-H. Song, J. Shang, D. M. Ratner, “9.08 – Polysaccharides” in Polymer Science: A Comprehensive Reference(Elsevier, 2012), pp. 137–155.
41
B.-H. Jun, Silver nano/microparticles: Modification and applications. Int. J. Mol. Sci. 20, 2609 (2019).
42
M. A. Diab, A. Z. El-Sonbati, D. M. Bader, Thermal stability and degradation of chitosan modified by benzophenone. Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 1057–1062 (2011).
43
S. Cheng, C.-M. Huang, M. Pecht, A review of lead-free solders for electronics applications. Microelectron. Reliab. 75, 77–95 (2017).
44
Everlight Electronics Co. Ltd., Reverse Package Chip LED with Inner Lens (Technical Data Sheet 25-21/T1D-ANQHY/2A, 2006); www.reichelt.de/de/en/smd-led-1206-reverse-white-112-mcd-70–evl-25-21-t1d-a-p232086.html and https://cdn-reichelt.de/documents/datenblatt/A500/25-21-T1D-ANQHY-2A_ENG_TDS.pdf.
45
A. Weissbach, L. M. Bongartz, M. Cucchi, H. Tseng, K. Leo, H. Kleemann, Photopatternable solid electrolyte for integrable organic electrochemical transistors: Operation and hysteresis. J. Mater. Chem. C 10, 2656–2662 (2022).
46
M. Cucchi, H. Kleemann, H. Tseng, G. Ciccone, A. Lee, D. Pohl, K. Leo, Directed growth of dendritic polymer networks for organic electrochemical transistors and artificial synapses. Adv. Electron. Mater. 7, 2100586 (2021).
47
B. Zareeipolgardani, A. Piednoir, B. Joyard-Pitiot, G. Depres, L. Charlet, J. Colombani, Multiscale investigation of the fate of silver during printed paper electronics recycling. Composite Inter. 30, 671–684 (2023).
48
J. Wiklund, A. Karakoç, T. Palko, H. Yiğitler, K. Ruttik, R. Jäntti, J. Paltakari, A review on printed electronics: Fabrication methods, inks, substrates, applications and environmental impacts. J. Manuf. Mater. Process. 5, 89 (2021).
49
L. F. Zemljič, Z. Peršin, P. Stenius, Improvement of chitosan adsorption onto cellulosic fabrics by plasma treatment. Biomacromolecules 10, 1181–1187 (2009).
50
S. Z. Rogovina, Biodegradable polymer composites based on synthetic and natural polymers of various classes. Polym. Sci. Ser. C 58, 62–73 (2016).
51
P. Shi, Q. Miao, Ü. Niinemets, M. Liu, Y. Li, K. Yu, K. J. Niklas, Scaling relationships of leaf vein and areole traits versus leaf size for nine Magnoliaceae species differing in venation density. Am. J. Bot. 109, 899–909 (2022).
52
P. Keller, H. Kawasaki, Conductive leaf vein networks produced via Ag nanoparticle self-assembly for potential applications of flexible sensor. Mater. Lett. 284, 128937 (2021).
53
V. Sharma, K. Jääskö, K. Yiannaco, A. Koivikko, V. Lampinen, V. Sariola, Performance comparison of fast, transparent, and biotic heaters based on leaf skeletons. Adv. Eng. Mater. 24, 2101625 (2022).
54
H. Li, Y. Ma, Y. Huang, Material innovation and mechanics design for substrates and encapsulation of flexible electronics: A review. Mater. Horiz. 8, 383–400 (2021).
55
X. Li, R. Li, Z. Liu, X. Gao, S. Long, G. Zhang, Integrated functional high-strength hydrogels with metal-coordination complexes and h-bonding dual physically cross-linked networks. Macromol. Rapid Commun.39, e1800400 (2018).
56
B. Ding, P. Zeng, Z. Huang, L. Dai, T. Lan, H. Xu, Y. Pan, Y. Luo, Q. Yu, H.-M. Cheng, B. Liu, A 2D material–based transparent hydrogel with engineerable interference colours. Nat. Commun. 13, 1212 (2022).
57
L. Shi, R. Yang, S. Lu, K. Jia, C. Xiao, T. Lu, T. Wang, W. Wei, H. Tan, S. Ding, Dielectric gels with ultra-high dielectric constant, low elastic modulus, and excellent transparency. NPG Asia Mater. 10, 821–826 (2018).
58
M. Kheirabadi, R. Bagheri, K. Kabiri, Swelling and mechanical behavior of nanoclay reinforced hydrogel: Single network vs. full interpenetrating polymer network. Polym. Bull. 72, 1663–1681 (2015).
59
Y. Cheng, R. Wang, H. Zhaia, J. Sun, Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. Nanoscale 9, 3834–3842 (2017).
60
H. Niu, H. Wang, H. Zhoua, T. Lin, Ultrafine PDMS fibers: Preparation from in situ curing-electrospinning and mechanical characterization. RSC Adv. 4, 11782–11787 (2014).
61
C. T. Pan, Y. C. Chen, P.-H. Lin, C. C. Hsieh, F. T. Hsu, P.-H. Lin, C. M. Chang, J. H. Hsu, J. C. Huang, Lens of controllable optical field with thin film metallic glasses for UV-LEDs. Opt. Express 22, 14411–14424 (2014).
62
P. Bodö, J.-E. Sundgren, Titanium deposition onto ion-bombarded and plasma-treated polydimethylsiloxane: Surface modification, interface and adhesio. Thin Solid Films 136, 147–159 (1986).
63
S. G. Kirtania, A. W. Elger, M. R. Hasan, A. Wisniewska, K. Sekhar, T. Karacolak, P. K. Sekhar, Flexible antennas: A review. Micromachines 11, 847 (2020).
64
K. Zalewski, Z. Chyłek, W. A. Trzciński, A review of polysiloxanes in terms of their application in explosives. Polymers 13, 1080 (2021).
65
N. S. Gupta, K.-S. Lee, A. Labouriau, Tuning thermal and mechanical properties of polydimethylsiloxane with carbon fibers. Polymers 13, 1141 (2021).
66
E. T. Filipov, K. Liu, T. Tachi, M. Schenk, G. H. Paulino, Bar and hinge models for scalable analysis of origami. Int. J. Solids Struct. 124, 26–45 (2017).
67
J. Chen, E. Dörsam, D. Spiehl, A. H. Tehrani, J. Da, “Stress-strain behavior of paper affected by the actual contact area” in Progress in Paper Physics Seminar 2016 (Technical University of Darmstadt, 2016), pp. 47–53.
68
A. Hovi, P. Forsström, M. Mõttus, M. Rautiainen, Evaluation of accuracy and practical applicability of methods for measuring leaf reflectance and transmittance spectra. Remote Sens. (Basel) 10, 10 (2018).
69
S. Simula, S. Ikäläinen, K. Niskanen, T. Varpula, Measurement of the dielectric properties of paper. J. Imaging Sci. Technol. 43, 472–477 (1999).
70
Y. Wang, T. Yang, J. Li, Glass transition temperature and mechanical properties in amorphous region of transformer insulation paper by molecular dynamic simulations. IEEE Int. Symp. Electr. Insul. 164–168 (2012).
71
A. de Ruvo, R. Lundberg, S. Martin-Löf, C. Söremark, “Influence of temperature and humidity on the elastic and expansional properties of paper and the constituent fibre” in Trans. of the Vth Fund. Res. Symp.(Cambridge, 1973), pp. 785–806.
72
M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).
73
C. Lechat, A. R. Bunsell, P. Davies, Tensile and creep behaviour of polyethylene terephthalate and polyethylene naphthalate fibres. J. Mater. Sci. 46, 528–533 (2011).
74
Z. Li, S. K. Sinha, G. M. Treich, Y. Wang, Q. Yang, A. A. Deshmukh, G. A. Sotzing, Y. Cao, All-organic flexible fabric antenna for wearable electronics. J. Mater. Chem. C 8, 5662–5667 (2020).
75
W. A. Macdonald, M. K. Looney, D. MacKerron, R. Eveson, R. Adam, K. Hashimoto, K. Rakos, Latest advances in substrates for flexible electronics. J. Soc. Inf. Disp. 15, 1075–1083 (2007).
76
H.-S. Lee, J.-O. Bang, H.-J. Lee, G.-J. Lee, K.-H. Chai, S.-B. Jung, “Analysis of thermo-mechanical behavior of ITO layer on PET substrate” in 2011 IEEE 61st Electronic Components and Technology Conference (ECTC)(IEEE, 2011), pp. 1796–1799.
77
R. Xu, J. W. Lee, T. Pan, S. Ma, J. Wang, J. H. Han, Y. Ma, J. A. Rogers, Y. Huang, Designing thin, ultrastretchable electronics with stacked circuits and elastomeric encapsulation materials. Adv. Funct. Mater. 27, 1604545 (2017).
78
T. Uhrmann, L. Bär, T. Dimopoulos, N. Wiese, M. Rührig, A. Lechner, Magnetostrictive GMR sensor on flexible polyimide substrates. J. Magn. Magn. Mater. 307, 209–211 (2006).
79
M. A. Riheen, T. Nguyen, T. K. Saha, T. Karacolak, P. K. Sekhar, CPW fed wideband bowtie slot antenna on PET substrate. Prog. Electromagn. Res. C 101, 147–158 (2020).
80
G.-L. Jiang, D.-Y. Wang, H.-P. Du, X. Wu, Y. Zhang, Y.-Y. Tan, L. Wu, J.-G. Liu, A. X.-M. Zhang, Reduced coefficients of linear thermal expansion of colorless and transparent semi-alicyclic polyimide films via incorporation of rigid-rod amide moiety: Preparation and properties. Polymers 12, 413 (2020).
81
K. A. Sierros, D. R. Cairns, J. S. Abell, S. N. Kukureka, Pulsed laser deposition of indium tin oxide films on flexible polyethylene naphthalate display substrates at room temperature. Thin Solid Films 518, 2623–2627 (2010).
82
M.-C. Choi, Y. Kim, C.-S. Ha, Polymers for flexible displays: From material selection to device applications. Prog. Polym. Sci. 33, 581–630 (2008).
83
A. Sudheshwar, N. Malinverno, R. Hischi, B. Nowack, C. Som, The need for design-for-recycling of paper-based printed electronics – A prospective comparison with printed circuit boards. Resour. Conserv. Recycl.189, 106757 (2023).
84
M. Gao, C. C. Shih, S. Y. Pan, C. C. Chueh, W. C. Chen, Advances and challenges of green materials for electronics and energy storage applications: From design to end-of-life recovery. J. Mater. Chem. A 6, 20546–20563 (2018).
85
J. Spokes, Jiva Materials (2022); www.jivamaterials.com/technology/.
86
A. C. Dias, L. Arroja, Comparison of methodologies for estimating the carbon footprint – Case study of office paper. J. Clean. Prod. 24, 30–35 (2012).
87
C. Mori de Oliveira, R. Bellopede, A. Tori, P. Marini, Study of metal recovery from printed circuit boards by physical-mechanical treatment processes. Mater. Proc. 5, 121 (2021).
88
V. Premur, A. A. Vučinić, D. Vujević, G. Bedeković, The possibility for environmental friendly recycling of printed circuit boards. J. Sustain. Devel. Energy Water Environ. Syst. 4, 14–22 (2016).
89
H. Andersson, J. Sidén, V. Skerved, X. Li, L. Gyllner, Soldering surface mount components onto inkjet printed conductors on paper substrate using industrial processes. IEEE Trans. Compon. Packaging Manuf. Technol. 6, 478–485 (2016).
90
A. Pietrikova, T. Lenger, L. Livovsky, “Mechanical properties of sandwich electronic boards after multi reflow exposure” in 2020 International Conference on Diagnostics in Electrical Engineering (Diagnostika) (IEEE, 2020), pp. 1–4.
91
Y. Wang, T. Yang J. Li, “Glass transition temperature and mechanical properties in amorphous region of transformer insulation paper by molecular dynamic simulations” in 2012 IEEE International Symposium on Electrical Insulation (IEEE, 2012), pp. 164–168.
92
K. Scheuer, J. Holmes, E. Galyaev, D. Blyth, R. Alarcon, Radiation effects on FR4 printed circuit boards. IEEE Trans. Nucl. Sci. 67, 1846–1851 (2020).
93
S. Simula, S. Ikäläinen, K. Niskanen, Measurement of the dielectric properties of paper. J. Imaging Sci. Technol. 43, 157–160 (1999).
94
E. Rio, F. Boulogne, Withdrawing a solid from a bath: How much liquid is coated? Adv. Colloid Interface Sci.247, 100–114 (2017).
95
C. Gutfinger, J. A. Tallmadge, Films of nonnewtonian fluids adhering to flat plates. AIChE J. 11, 403–413 (1965).
96
M. Fikry, M. Mohie, M. Gamal, A. Ibrahim, G. Genidy, Superior control for physical properties of sputter deposited ITO thin-films proper for some transparent solar applications. Opt. Quant. Electron 53, 122 (2021).
97
C. P. Constantin, M. Aflori, R. F. Damian, R. D. Rusu, Biocompatibility of polyimides: A mini-review. Materials 12, 3166 (2019).
98
N. K. Mondal, S. Kundu, P. Debnath, A. Mondal, K. Sen, Effects of polyethylene terephthalate microplastic on germination, biochemistry and phytotoxicity of Cicer arietinum L. and cytotoxicity study on Allium cepa L. Environ. Toxicol. Pharmacol. 94, 103908 (2022).
99
D. A. van den Ende, R. Hendriks, R. Cauchois, W. A. Groen, Large area photonic flash soldering of thin chips on flex foils for flexible electronic systems: In situ temperature measurements and thermal modelling. Electro. Mater. Lett. 10, 1175–1183 (2014).
100
V. Bampidis, G. Azimonti, M. de Lourdes Bastos, H. Christensen, B. Dusemund, M. Durjava, M. Kouba, M. López-Alonso, S. L. Puente, F. Marcon, B. Mayo, A. Pechová, M. Petkova, F. Ramos, R. E. Villa, R. Woutersen, M. Anguita, J. Galobart, P. Manini, M. V. Vettori, M. Innocenti, Scientific Opinion on the safety and efficacy of ethyl cellulose for all animal species. EFSA J. 18, 6210 (2020).
101
CarbonCloud, “The climate intelligence platform”; https://apps.carboncloud.com/climatehub/product-reports/050700566887/USA.
102
CarbonCloud, “The climate intelligence platform”; https://apps.carboncloud.com/climatehub/product-reports/id/5435817490.
103
CarbonCloud, “The climate intelligence platform”; https://apps.carboncloud.com/climatehub/product-reports/id/44158023257.
104
I. Tiseo, “Carbon intensity of the power sector in Germany from 2000 to 2022 (in grams of CO₂ per kilowatt-hour),” Statista; www.statista.com/statistics/1290224/carbon-intensity-power-sector-germany/.
105
T. Dürig, K. Karan, “Binders in wet granulation” in Handbook of Pharmaceutical Wet Granulation (Academic Press, 2019), pp. 317–349.
106
O. A. Adeleke, Premium ethylcellulose polymer based architectures at work in drug delivery. Int. J. Pharm. X 1, 2590–1567 (2019).
107
A. H. Tullo, “The search for greener ethylene,” Chemical & Engineering News (C&EN), 15 March 2021; https://cen.acs.org/business/petrochemicals/search-greener-ethylene/99/i9 [accessed 23 October 2023].
108
CarbonCloud, “The climate intelligence platform”; https://apps.carboncloud.com/climatehub/product-reports/id/1267952392638.
109
CarbonCloud, “The climate intelligence platform”; https://apps.carboncloud.com/climatehub/product-reports/id/183314951001.
110
CarbonCloud, “The climate intelligence platform”; https://apps.carboncloud.com/climatehub/product-reports/id/48954332807.
111
A. Riofrio, T. Alcivar, H. Baykara, Environmental and economic viability of chitosan production in Guayas-Ecuador: A robust investment and life cycle analysis. ACS Omega 6, 23038–23051 (2021).
112
A. Sudheshwar, N. Malinverno, R. Hischi, B. Nowack, C. Som, The need for design-for-recycling of paper-based printed electronics – A prospective comparison with printed circuit boards. Resour. Conserv. Recycl.189, 106757 (2023).
113
H. Wu, S. W. Chiang, W. Lin, C. Yang, Z. Li, J. Liu, X. Cui, F. Kang, C. P. Wong, Towards practical application of paper based printed circuits: Capillarity effectively enhances conductivity of the thermoplastic electrically conductive adhesives. Sci. Rep. 4, 6275 (2014).
114
J. Liu, C. Yang, H. Wu, Z. Lin, Z. Zhang, R. Wang, B. Li, F. Kang, L. Shi, C. P. Wong, Future paper based printed circuit boards for green electronics: Fabrication and life cycle assessment. Energy Environ. Sci. 7, 3674–3682 (2014).
115
M. Keskinen, “End-of-life options for printed electronics” in Waste Electrical and Electronic Equipment (WEEE) Handbook (Woodhead Publishing, 2012), pp. 352–364.
116
H. Andersson, J. Sidén, V. Skerved, X. Li, L. Gyllner, Soldering surface mount components onto inkjet printed conductors on paper substrate using industrial processes. IEEE Trans. Compon. Packaging Manuf. Technol. 6, 478–485 (2016).
117
B. Zareeipolgardani, A. Piednoir, B. Joyard-Pitiot, G. Depres, L. Charlet, J. Colombani, Multiscale investigation of the fate of silver during printed paper electronics recycling. Compos. Inter. 30, 671–684 (2023).
Pledge Your Vote Now
Change language