New research: High heat is preferentially killing the young

From: Andrew J. Wilson, R. Daniel Bressler, Catherine Ivanovich, Cascade Tuholske, Colin Raymond, Radley M. Horton, Adam Sobel, Patrick Kinney, Tereza Cavazos, Jeffrey G. Shrader. Heat disproportionately kills young people: Evidence from wet-bulb temperature in Mexico. Science Advances, 2024; 10 (49)

High heat is preferentially killing the young, not the old, new research finds

In Mexico, workers under 35 and small children suffer most

Date:
December 6, 2024
Source:
Columbia Climate School
Summary:
Many recent studies assume that elderly people are at particular risk of dying from extreme heat as the planet warms. A new study of mortality in Mexico turns this assumption on its head: it shows that 75% of heat-related deaths are occurring among people under 35 — a large percentage of them ages 18 to 35, or the very group that one might expect to be most resistant to heat.
Share:
FULL STORY

Many recent studies assume that elderly people are at particular risk of dying from extreme heat as the planet warms. A new study of mortality in Mexico turns this assumption on its head: it shows that 75% of heat-related deaths are occurring among people under 35 — a  large percentage of them ages 18 to 35, or the very group that one might expect to be most resistant to heat.

“It’s a surprise. These are physiologically the most robust people in the population,” said study coauthor Jeffrey Shrader of the Center for Environmental Economics and Policy, an affiliate of Columbia University’s Climate School. “I would love to know why this is so.” The research appears this week in the journal Science Advances.

The researchers chose Mexico for the study because it collects highly granular geographical data on both mortality and daily temperatures. The researchers reached their conclusions by correlating excess mortality — that is, the number of deaths above or below the average — with temperatures on the so-called wet-bulb scale, which measures the magnified effects of heat when combined with humidity.

The analysis found that from 1998 to 2019, the country suffered about 3,300 heat-related deaths per year. Of these, nearly a third occurred in people ages 18 to 35 — a figure far out of proportion with the numbers in that age bracket. Also highly vulnerable: children under 5, especially infants. Surprisingly, people 50 to 70 suffered the least amount of heat-related mortality.

Based on this, “we project, as the climate warms, heat-related deaths are going to go up, and the young will suffer the most,” said the study’s co-lead author, R. Daniel Bressler, a PhD. candidate in Columbia’s Sustainable Development program.

The researchers say several factors may be at work. Young adults are more likely to be engaged in outdoor labor including farming and construction, and thus more exposed to dehydration and heat stroke. The same goes for indoor manufacturing in spaces that lack air conditioning. “These are the more junior people, low on the totem pole, who probably do the lion’s share of hard work, with inflexible work arrangements,” said Shrader. Young adults are also more likely to participate in strenuous outdoor sports, the researchers point out. A previous separate analysis by Mexican researchers showed that death certificates of working-age men were more likely to list extreme weather as a cause than those of other groups.

The vulnerability of infants and small children came as somewhat less of a surprise. It is already known that their bodies absorb heat quickly, and their ability to sweat, and therefore cool off, is not fully developed. Their immune systems are also still developing, which can make them prey to ailments that become more common with humid heat, including vector-borne and diarrheal diseases.

Wet bulb temperatures are often converted by popular media into “real-feel” heat indexes on the Fahrenheit scale, where numbers can vary depending on the exact combination of heat and humidity. According to the study, wet-bulb temperatures of around 13 C (equivalent to 71 F with 40% humidity) are ideal for young people; in this range, they suffer minimum mortality. Previous research has suggested that workers begin to struggle when wet-bulb temperatures reach about 27 degrees C, which would equate to 86 to 105 F, depending on humidity. However, the new study found that the largest number of deaths occurred at wet-bulb temperatures of just 23 or 24 C, in part because those temperatures occurred far more frequently than higher ones, and thus cumulatively exposed more people to dangerous conditions.

Using the same daily temperature and mortality data, the researchers found that elderly people died predominantly not from heat, but rather modest cold. (Mexico is mainly tropical and subtropical, but has many climate zones including high-elevation areas that can get relatively chilly.) Among other things, older people tend to have lower core temperatures, making them more sensitive to cold. In response, they may be prone to staying indoors, where infectious diseases spread more easily.

Despite all the attention given to the dangers of global warming, extensive research has revealed that cold, not heat, is currently the world’s number one cause of temperature-related mortality, including in Mexico. However, the proportion of heat-related deaths has been climbing since at least 2000, and this trend is expected to continue.

The new study has global implications, say the researchers. Mexico is a middle-income country; by share of population under 35, it is about average, and some 15% of workers are employed in agriculture. By contrast, many poorer, hot countries, mainly in Africa and Asia, have much younger populations that work in manual labor at much higher percentages. Thus, if Mexico is any indicator, heat-related mortality in those nations could be massive. A study published last year showed that farmworkers in many poor countries are already planting and harvesting amid increasingly oppressive heat and humidity.

Bressler said the team is now looking to firm up its conclusions by expanding its research into other countries, including the United States and Brazil.

The study was co-led by Andrew Wilson of Stanford University. Coauthors include Cascade Tuholske of Montana State University; Colin Raymond of the University of California, Los Angeles; Patrick Kinney of Boston University, Teresa Cavazos of the Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California; and Catherine Ivanovich, Radley Horton and Adam Sobel of the Columbia Climate School.


Story Source:

Materials provided by Columbia Climate School. Original written by Kevin Krajick. Note: Content may be edited for style and length.


Journal Reference:

  1. Andrew J. Wilson, R. Daniel Bressler, Catherine Ivanovich, Cascade Tuholske, Colin Raymond, Radley M. Horton, Adam Sobel, Patrick Kinney, Tereza Cavazos, Jeffrey G. Shrader. Heat disproportionately kills young people: Evidence from wet-bulb temperature in Mexico. Science Advances, 2024; 10 (49) DOI: 10.1126/sciadv.adq3367

REFERENCES AND NOTES

1
A. Gasparrini, Y. Guo, M. Hashizume, E. Lavigne, A. Zanobetti, J. Schwartz, A. Tobias, S. Tong, J. Rocklöv, B. Forsberg, M. Leone, M. de Sario, M. L. Bell, Y.-L. L. Guo, C.-F. Wu, H. Kan, S.-M. Yi, M. de Sousa Zanotti Stagliorio Coelho, P. H. N. Saldiva, Y. Honda, H. Kim, B. Armstrong, Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet 386, 369–375 (2015).
2
D. Mitchell, C. Heaviside, S. Vardoulakis, C. Huntingford, G. Masato, B. P. Guillod, P. Frumhoff, A. Bowery, D. Wallom, M. Allen, Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett. 11, 074006 (2016).
3
A. M. Vicedo-Cabrera, N. Scovronick, F. Sera, D. Royé, R. Schneider, A. Tobias, C. Astrom, Y. Guo, Y. Honda, D. M. Hondula, R. Abrutzky, S. Tong, M. S. Z. S. Coelho, P. H. N. Saldiva, E. Lavigne, P. M. Correa, N. V. Ortega, H. Kan, S. Osorio, J. Kyselý, A. Urban, H. Orru, E. Indermitte, J. J. K. Jaakkola, N. Ryti, M. Pascal, A. Schneider, K. Katsouyanni, E. Samoli, F. Mayvaneh, A. Entezari, P. Goodman, A. Zeka, P. Michelozzi, F. de’Donato, M. Hashizume, B. Alahmad, M. H. Diaz, C. D. L. C. Valencia, A. Overcenco, D. Houthuijs, C. Ameling, S. Rao, F. di Ruscio, G. Carrasco-Escobar, X. Seposo, S. Silva, J. Madureira, I. H. Holobaca, S. Fratianni, F. Acquaotta, H. Kim, W. Lee, C. Iniguez, B. Forsberg, M. S. Ragettli, Y. L. L. Guo, B. Y. Chen, S. Li, B. Armstrong, A. Aleman, A. Zanobetti, J. Schwartz, T. N. Dang, D. V. Dung, N. Gillett, A. Haines, M. Mengel, V. Huber, A. Gasparrini, The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Change 11, 492–500 (2021).
4
R. D. Bressler, The mortality cost of carbon. Nat. Commun. 12, 4467 (2021).
5
R. D. Bressler, F. C. Moore, K. Rennert, D. Anthoff, Estimates of country level temperature-related mortality damage functions. Sci. Rep. 11, 20282 (2021).
6
T. Carleton, A. Jina, M. Delgado, M. Greenstone, T. Houser, S. Hsiang, A. Hultgren, R. E. Kopp, K. E. McCusker, I. Nath, J. Rising, A. Rode, H. K. Seo, A. Viaene, J. Yuan, A. T. Zhang, Valuing the global mortality consequences of climate change accounting for adaptation costs and benefits. Q. J. Econ. 69, 2037–2105 (2022).
7
K. Chen, R. M. Horton, D. A. Bader, C. Lesk, L. Jiang, B. Jones, L. Zhou, X. Chen, J. Bi, P. L. Kinney, Impact of climate change on heat-related mortality in Jiangsu Province, China. Environ. Pollut. 224, 317–325 (2017).
8
K. R. Cromar, S. C. Anenberg, J. R. Balmes, A. A. Fawcett, M. Ghazipura, J. M. Gohlke, M. Hashizume, P. Howard, E. Lavigne, K. Levy, J. Madrigano, J. A. Martinich, E. A. Mordecai, M. B. Rice, S. Saha, N. C. Scovronick, F. Sekercioglu, E. R. Svendsen, B. F. Zaitchik, G. Ewart, Global health impacts for economic models of climate change: A systematic review and meta-analysis. Ann. Am. Thorac. Soc. 19, 1203–1212 (2022).
9
O. Deschênes, M. Greenstone, Climate change, mortality, and adaptation: Evidence from annual fluctuations in weather in the US. Am. Econ. J. Appl. Econ. 3, 152–185 (2011).
10
A. Gasparrini, Y. Guo, F. Sera, A. M. Vicedo-Cabrera, V. Huber, S. Tong, M. de Sousa Zanotti Stagliorio Coelho, P. H. Nascimento Saldiva, E. Lavigne, P. Matus Correa, N. Valdes Ortega, H. Kan, S. Osorio, J. Kyselý, A. Urban, J. J. K. Jaakkola, N. R. I. Ryti, M. Pascal, P. G. Goodman, A. Zeka, P. Michelozzi, M. Scortichini, M. Hashizume, Y. Honda, M. Hurtado-Diaz, J. Cesar Cruz, X. Seposo, H. Kim, A. Tobias, C. Iñiguez, B. Forsberg, D. O. Åström, M. S. Ragettli, Y. L. Guo, C. F. Wu, A. Zanobetti, J. Schwartz, M. L. Bell, T. N. Dang, D. D. van, C. Heaviside, S. Vardoulakis, S. Hajat, A. Haines, B. Armstrong, Projections of temperature-related excess mortality under climate change scenarios. Lancet Planetary Health 1, E360–E367 (2017).
11
S. Hajat, S. Vardoulakis, C. Heaviside, B. Eggen, Climate change effects on human health: Projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s. J. Epidemiol. Community Health 68, 641–648 (2014).
12
S. Hales, S. Kovats, S. Lloyd, D. Campbell-Lendrum, Quantitative Risk Assessment of the Effects of Climate Change on Selected Causes of Death, 2030s and 2050s (World Health Organization, 2014).
13
Y. Honda, M. Kondo, G. McGregor, H. Kim, Y.-L. Guo, Y. Hijioka, M. Yoshikawa, K. Oka, S. Takano, S. Hales, R. S. Kovats, Heat-related mortality risk model for climate change impact projection. Environ. Health Prev. Med. 19, 56–63 (2014).
14
T. Houser, S. Hsiang, R. Kopp, K. Larsen, M. Delgado, A. Jina, M. Mastrandrea, S. Mohan, R. Muir-Wood, D. J. Rasmussen, J. Rising, P. Wilson, Economic Risks of Climate Change: An American Prospectus (Columbia Univ. Press, 2015).
15
S. L. Kingsley, M. N. Eliot, J. Gold, R. R. Vanderslice, G. A. Wellenius, Current and projected heat-related morbidity and mortality in Rhode Island. Environ. Health Perspect. 124, 460–467 (2016).
16
K. Knowlton, B. Lynn, R. A. Goldberg, C. Rosenzweig, C. Hogrefe, J. K. Rosenthal, P. L. Kinney, Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health97, 2028–2034 (2007).
17
D.-W. Kim, R. C. Deo, J.-H. Chung, J.-S. Lee, Projection of heat wave mortality related to climate change in Korea. Nat. Hazards 80, 623–637 (2016).
18
J. Y. Lee, H. Kim, Projection of future temperature-related mortality due to climate and demographic changes. Environ. Int. 94, 489–494 (2016).
19
T. Li, R. M. Horton, P. L. Kinney, Projections of seasonal patterns in temperature-related deaths for Manhattan, New York. Nat. Clim. Change 3, 717–721 (2013).
20
A. Marsha, S. R. Sain, M. J. Heaton, A. J. Monaghan, O. V. Wilhelmi, Influences of climatic and population changes on heat-related mortality in Houston, Texas, USA. Clim. Change 146, 471–485 (2018).
21
È. Martínez-Solanas, M. Quijal-Zamorano, H. Achebak, D. Petrova, J.-M. Robine, F. R. Herrmann, X. Rodó, J. Ballester, Projections of temperature-attributable mortality in Europe: A time series analysis of 147 contiguous regions in 16 countries. Lancet. Planetary Health 5, E446–E454 (2021).
22
R. D. Peng, J. F. Bobb, C. Tebaldi, L. M. Daniel, M. L. Bell, F. Dominici, Toward a quantitative estimate of future heat wave mortality under global climate change. Environ. Health Perspect. 119, 701–706 (2011).
23
E. Petkova, R. Horton, D. Bader, P. Kinney, Projected heat-related mortality in the U.S. urban Northeast. Int. J. Environ. Res. Public Health 10, 6734–6747 (2013).
24
J. D. Schwartz, M. Lee, P. L. Kinney, S. Yang, D. Mills, M. C. Sarofim, R. Jones, R. Streeter, A. S. Juliana, J. Peers, R. M. Horton, Projections of temperature-attributable premature deaths in 209 U.S. cities using a cluster-based Poisson approach. Environ. Health 14, 85 (2015).
25
D. Shindell, Y. Zhang, M. Scott, M. Ru, K. Stark, K. L. Ebi, The effects of heat exposure on human mortality throughout the United States. GeoHealth 4, e2019GH000234 (2020).
26
J. Yang, M. Zhou, Z. Ren, M. Li, B. Wang, D. L. Liu, C.-Q. Ou, P. Yin, J. Sun, S. Tong, H. Wang, C. Zhang, J. Wang, Y. Guo, Q. Liu, Projecting heat-related excess mortality under climate change scenarios in China. Nat. Commun. 12, 1039 (2021).
27
B. Zhang, G. Li, Y. Ma, X. Pan, Projection of temperature-related mortality due to cardiovascular disease in Beijing under different climate change, population, and adaptation scenarios. Environ. Res. 162, 152–159 (2018).
28
J. A. Jáuregui Díaz, M. de Jesús Ávila Sánchez, R. T. Cabañas, Cambios en la mortalidad por eventos climáticos extremos en México entre el 2000 y 2015. Revista de Estudios Latinoamericanos sobre Reducci’on del Riesgo de Desastres REDER 4, 80–94 (2020).
29
T. Li, R. M. Horton, D. A. Bader, M. Zhou, X. Liang, J. Ban, Q. Sun, P. L. Kinney, Aging will amplify the heat-related mortality risk under a changing climate: Projection for the elderly in Beijing, China. Sci. Rep. 6, 28161 (2016).
30
C. Mora, B. Dousset, I. R. Caldwell, F. E. Powell, R. C. Geronimo, C. R. Bielecki, C. W. W. Counsell, B. S. Dietrich, E. T. Johnston, L. V. Louis, M. P. Lucas, M. M. McKenzie, A. G. Shea, H. Tseng, T. W. Giambelluca, L. R. Leon, E. Hawkins, C. Trauernicht, Global risk of deadly heat. Nat. Clim. Change 7, 501–506 (2017).
31
B. Armstrong, F. Sera, A. M. Vicedo-Cabrera, R. Abrutzky, D. O. Åström, M. L. Bell, B. Y. Chen, M. de Sousa Zanotti Stagliorio Coelho, P. M. Correa, T. N. Dang, M. H. Diaz, D. V. Dung, B. Forsberg, P. Goodman, Y. L. L. Guo, Y. Guo, M. Hashizume, Y. Honda, E. Indermitte, C. Íñiguez, H. Kan, H. Kim, J. Kyselý, E. Lavigne, P. Michelozzi, H. Orru, N. V. Ortega, M. Pascal, M. S. Ragettli, P. H. N. Saldiva, J. Schwartz, M. Scortichini, X. Seposo, A. Tobias, S. Tong, A. Urban, C. de la Cruz Valencia, A. Zanobetti, A. Zeka, A. Gasparrini, The role of humidity in associations of high temperature with mortality:a multicountry, multicity study. Environ. Health Perspect. 127, 097007 (2019).
32
C. Raymond, T. Matthews, R. M. Horton, The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6, eaaw1838 (2020).
33
S. C. Sherwood, M. Huber, An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. U.S.A. 107, 9552–9555 (2010).
34
D. J. Vecellio, S. T. Wolf, R. M. Cottle, W. L. Kenney, Evaluating the 35°C wet-bulb temperature adaptability threshold for young, healthy subjects (PSU HEAT Project). J. Appl. Physiol. 132, 340–345 (2022).
35
J. Vanos, G. Guzman-Echavarria, J. W. Baldwin, C. Bongers, K. L. Ebi, O. Jay, A physiological approach for assessing human survivability and liveability to heat in a changing climate. Nat. Commun. 14, 7653 (2023).
36
J. W. Baldwin, T. Benmarhnia, K. L. Ebi, O. Jay, N. J. Lutsko, J. K. Vanos, Humidity’s role in heat-related health outcomes: A heated debate. Environ. Health Perspect. 131, 055001 (2023).
37
G. Havenith, D. Fiala, Thermal indices and thermophysiological modeling for heat stress. Compr. Physiol.6, 255–302 (2011).
38
J. R. Buzan, M. Huber, Moist heat stress on a hotter earth. Annu. Rev. Earth Planet. Sci. 48, 623–655 (2020).
39
K. Parsons, Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance (CRC Press, 2014).
40
R. G. Steadman, The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. J. Appl. Meteorol. Climatol. 18, 861–873 (1979).
41
K. L. Ebi, A. Capon, P. Berry, C. Broderick, R. de Dear, G. Havenith, Y. Honda, R. S. Kovats, W. Ma, A. Malik, N. B. Morris, L. Nybo, S. I. Seneviratne, J. Vanos, O. Jay, Hot weather and heat extremes: Health risks. Lancet 398, 698–708 (2021).
42
E. Gallo, M. Quijal-Zamorano, R. F. Méndez Turrubiates, C. Tonne, X. Basagaña, H. Achebak, J. Ballester, Heat-related mortality in Europe during 2023 and the role of adaptation in protecting health. Nat. Med.10.1038/s41591-024-03186-1 (2024).
43
R. Davies-Jones, An efficient and accurate method for computing the wet-bulb temperature along pseudoadiabats. Mon. Weather Rev. 136, 2764–2785 (2008).
44
J. Schwartz, Harvesting and long term exposure effects in the relation between air pollution and mortality. Am. J. Epidemiol. 151, 440–448 (2000).
45
B. Thrasher, E. P. Maurer, C. McKellar, P. B. Duffy, Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci. 16, 3309–3314 (2012).
46
K. Riahi, D. P. van Vuuren, E. Kriegler, J. Edmonds, B. C. O’Neill, S. Fujimori, N. Bauer, K. Calvin, R. Dellink, O. Fricko, W. Lutz, A. Popp, J. C. Cuaresma, S. KC, M. Leimbach, L. Jiang, T. Kram, S. Rao, J. Emmerling, K. Ebi, T. Hasegawa, P. Havlik, F. Humpenöder, L. A. da Silva, S. Smith, E. Stehfest, V. Bosetti, J. Eom, D. Gernaat, T. Masui, J. Rogelj, J. Strefler, L. Drouet, V. Krey, G. Luderer, M. Harmsen, K. Takahashi, L. Baumstark, J. C. Doelman, M. Kainuma, Z. Klimont, G. Marangoni, H. Lotze-Campen, M. Obersteiner, A. Tabeau, M. Tavoni, The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 42, 153–168 (2017).
47
R. J. H. Dunn, K. M. Willett, D. E. Parker, L. Mitchell, Expanding HadISD: Quality controlled, sub-daily station data from 1931. Geosci. Instrum. Methods Data Syst. 5, 473–491 (2016).
48
J. Muñoz-Sabater, E. Dutra, A. Agustí-Panareda, C. Albergel, G. Arduini, G. Balsamo, S. Boussetta, M. Choulga, S. Harrigan, H. Hersbach, B. Martens, D. G. Miralles, M. Piles, N. J. Rodríguez-Fernández, E. Zsoter, C. Buontempo, J.-N. Thépaut, ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).
49
C. Raymond, D. Waliser, B. Guan, H. Lee, P. Loikith, E. Massoud, A. Sengupta, D. Singh, A. Wootten, Regional and elevational patterns of extreme heat stress change in the US. Environ. Res. Lett. 17, 064046 (2022).
50
F. Cohen, A. Dechezleprêtre, Mortality, temperature, and public health provision: Evidence from Mexico. Am. Econ. J. Econ. Policy 14, 161–192 (2022).
51
C. M. Powis, D. Byrne, Z. Zobel, K. N. Gassert, A. C. Lute, C. R. Schwalm, Observational and model evidence together support wide-spread exposure to noncompensable heat under continued global warming. Sci. Adv. 9, eadg9297 (2023).
52
Y. Wu, S. Li, Q. Zhao, B. Wen, A. Gasparrini, S. Tong, A. Overcenco, A. Urban, A. Schneider, A. Entezari, A. M. Vicedo-Cabrera, A. Zanobetti, A. Analitis, A. Zeka, A. Tobias, B. Nunes, B. Alahmad, B. Armstrong, B. Forsberg, S. C. Pan, C. Íñiguez, C. Ameling, C. de la Cruz Valencia, C. Åström, D. Houthuijs, D. van Dung, D. Royé, E. Indermitte, E. Lavigne, F. Mayvaneh, F. Acquaotta, F. de’Donato, S. Rao, F. Sera, G. Carrasco-Escobar, H. Kan, H. Orru, H. Kim, I.-H. Holobaca, J. Kyselý, J. Madureira, J. Schwartz, J. J. K. Jaakkola, K. Katsouyanni, M. Hurtado Diaz, M. S. Ragettli, M. Hashizume, M. Pascal, M. de Sousa Zanotti Stagliorio Coélho, N. V. Ortega, N. Ryti, N. Scovronick, P. Michelozzi, P. M. Correa, P. Goodman, P. H. Nascimento Saldiva, R. Abrutzky, S. Osorio, T. N. Dang, V. Colistro, V. Huber, W. Lee, X. Seposo, Y. Honda, Y. L. Guo, M. L. Bell, Y. Guo, Global, regional, and national burden of mortality associated with short-term temperature variability from 2000–19: A three-stage modelling study. Lancet Planetary Health 6, E410–E421 (2022).
53
EPA, Supplementary Material for the Regulatory Impact Analysis for the Supplemental Proposed Rulemaking, “Standards of Performance for New, Reconstructed, and Modified Sources and Emissions Guidelines for Existing Sources: Oil and Natural Gas Sector Climate Review” (2022); https://t.co/QllVBWDGmL.
54
K. Rennert, F. Errickson, B. C. Prest, L. Rennels, R. G. Newell, W. Pizer, C. Kingdon, J. Wingenroth, R. Cooke, B. Parthum, D. Smith, K. Cromar, D. Diaz, F. C. Moore, U. K. Müller, R. J. Plevin, A. E. Raftery, H. Ševčíková, H. Sheets, J. H. Stock, T. Tan, M. Watson, T. E. Wong, D. Anthoff, Comprehensive evidence implies a higher social cost of CO2. Nature 610, 687–692 (2022).
55
N. Vassilieff, N. Rosencher, D. I. Sessler, C. Conseiller, Shivering threshold during spinal anesthesia is reduced in elderly patients. Anesthesiology 83, 1162–1166 (1995).
56
C. H. Saely, K. Geiger, H. Drexel, Brown versus white adipose tissue: A mini-review. Gerontology 58, 15–23 (2011).
57
A. Zanobetti, M. S. O’Neill, C. J. Gronlund, J. D. Schwartz, Susceptibility to mortality in weather extremes: Effect modification by personal and small area characteristics in a multi-city case-only analysis. Epidemiology 24, 809–819 (2013).
58
N. Leigh-Hunt, D. Bagguley, K. Bash, V. Turner, S. Turnbull, N. Valtorta, W. Caan, An overview of systematic reviews on the public health consequences of social isolation and loneliness. Public Health 152, 157–171 (2017).
59
P. Soriano-Hernandez, A. Mejia-Montero, D. van der Horst, Characterisation of energy poverty in Mexico using energy justice and econophysics. Energy Sustain. Dev. 71, 200–211 (2022).
60
B. Falk, R. Dotan, Children’s thermoregulation during exercise in the heat—A revisit. Appl. Physiol. Nutr. Metab. 33, 420–427 (2008).
61
Z. Xu, R. A. Etzel, H. Su, C. Huang, Y. Guo, S. Tong, Impact of ambient temperature on children’s health: A systematic review. Environ. Res. 117, 120–131 (2012).
62
J. J. Brown, M. Pascual, M. C. Wimberly, L. R. Johnson, C. C. Murdock, Humidity–The overlooked variable in the thermal biology of mosquito-borne disease. Ecol. Lett. 26, 1029–1049 (2023).
63
J. Graff Zivin, J. Shrader, Temperature extremes, health, and human capital. Future of Children 26, 31–50 (2016).
64
F. Pavanello, E. de Cian, M. Davide, M. Mistry, T. Cruz, P. Bezerra, D. Jagu, S. Renner, R. Schaeffer, A. F. P. Lucena, Air-conditioning and the adaptation cooling deficit in emerging economies. Nat. Commun. 12, 6460 (2021).
65
T. Kjellström, N. Maître, C. Saget, M. Otto, T. Karimova, Working on a Warmer Planet: The Impact of Heat Stress on Labour Productivity and Decent Work (ILO, 2019).
66
H. K. Green, O. Lysaght, D. D. Saulnier, K. Blanchard, A. Humphrey, B. Fakhruddin, V. Murray, Challenges with disaster mortality data and measuring progress towards the implementation of the sendai framework. Int. J. Disaster Risk Sci. 10, 449–461 (2019).
67
World Bank Group, International Labour Organization modelled estimates database (2024); https://data.worldbank.org/indicator/SL.AGR.EMPL.ZS?locations=XP-1W-MX [accessed 7 February 2024].
68
OSHA, Heat injury and illness prevention in outdoor and indoor work settings. Federal Register (2024).
69
V. Gaigbe-Togbe, L. Bassarsky, D. Gu, T. Spoorenberg, L. Zeifman, World Population Prospects 2022 (Department of Economic and Social Affairs, Population Division, 2022).
70
United Nations Department of Economic and Social Affairs, World Population Prospects 2022: Summary of Results (United Nations, 2023).
71
E. M. Fischer, R. Knutti, Robust projections of combined humidity and temperature extremes. Nat. Clim. Change 3, 126–130 (2013).
72
J. Yuan, M. L. Stein, R. E. Kopp, The evolving distribution of relative humidity conditional upon daily maximum temperature in a warming climate. J. Geophys. Res. Atmos. 125, e2019JD032100 (2020).
73
J. R. Buzan, K. Oleson, M. Huber, Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev. 8, 151–170 (2015).
74
A. Barreca, K. Clay, O. Deschenes, M. Greenstone, J. S. Shapiro, Adapting to climate change: The remarkable decline in the US temperature-mortality relationship over the twentieth century. J. Political Econ.124, 105–159 (2016).
75
J. Shrader, L. Bakkensen, D. Lemoine, Fatal errors: The mortality value of accurate weather forecasts (IZA Discussion Paper 16253, 2023), p. 1–41; https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4490162.
76
W. Lai, S. Li, Y. Liu, P. J. Barwick, Adaptation mitigates the negative effect of temperature shocks on household consumption. Nat. Hum. Behav. 6, 837–846 (2022).
77
R. Regules García, A. C. Gomez-Ugarte, H. Zoraghein, L. Jiang, Sub-national population projections for Mexico under the Shared Socioeconomic Pathways (SSPs) in the context of climate change. Popul. Res. Policy Rev. 43, 44 (2024).
79
HM Treasury, The Green Book: Appraisal and Evaluation in Central Government (HM Treasury, 2022); https://www.gov.uk/government/publications/the-green-book-appraisal-and-evaluation-in-central-government (2023).
80
F. C. Lab and C. for International Earth Science Information Network CIESIN Columbia University, High Resolution Settlement Layer (HRSL), 2016, Source imagery for HRSL © 2016 DigitalGlobe 2016.
81
F. E. Harrell, Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis (Springer International Publishing, 2015).
82
L. Bergé, Efficient estimation of maximum likelihood models with multiple fixed-effects: The R package FENmlm. CREA Discussion Papers (2018).
83
J. Dong, S. Bronniman, T. Hu, Y. Liu, J. Peng, GSDM-WBT: Global station-based daily maximum wet-bulb temperature data for 1981-2020. Earth Syst. Sci. Data 14, 5651–5664 (2022).
84
K. Sims, A.Reith, E. Bright, J. Kaufman, J. Pyle, J. Epting, J. Gonzales, D. Adams, E. Powell, M. Urban, A. Rose, LandScan Global 2022 (2023); https://landscan.ornl.gov.

Pledge Your Vote Now
Change language